Problem: Let $\Omega$ be the disk $x^2+y^2 < 4$ in $\mathbb{R}^4$ with boundary $\partial \Omega$. If $u(x, y)$ is the solution of the Dirichlet problem
\begin{gather*}
u_{x x}+u_{y y}=0, \quad(x, y) \in \Omega, \\
u(x, y)=1+2 x^2,(x, y) \in \partial \Omega,
\end{gather*}
then the value of $u(0,1)$ is ________________.
Solution: The Dirichlet problem in the polar form can be written as
\begin{equation}\label{eq:23Aug2024-1}
\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2}\frac{\partial^2 u}{\partial \theta ^2} = 0,
\end{equation}
with $0 < r < 2$ and $\theta \in [0,2\pi ]$. The boundary condition will be
\begin{align*}
u(2,\theta ) & = 1 + 2(2\cos \theta )^2 = 1 + 4(2\cos ^2\theta) \\
& = 1 + 4 \left( 1 + \cos 2\theta \right) = 5 + 4 \cos 2\theta .
\end{align*}
We recall that the solution of the equation \eqref{eq:23Aug2024-1} is given by
\begin{equation}\label{eq:23Aug2024-2}
u(r,\theta ) = A_0 + \sum_{n=1}^{\infty} r^n \left[ A_n \cos (n \theta ) + B_n \sin (n \theta ) \right].
\end{equation}
Applying the boundary condition to the above solution, we get
\begin{align*}
5 + 4 \cos 2\theta = A_0 + \sum_{n=1}^{\infty} 2^n \left[ A_n \cos (n \theta ) + B_n \sin (n \theta ) \right].
\end{align*}
This implies,
\begin{gather*}
A_0 = 5, \quad A_2 = 1, \quad A_n = 0, \quad n \neq 0,2\\
B_n = 0, \quad n \in \mathbb{N} .
\end{gather*}
Therefore, the solution to the given equation will be
\[
u(r,\theta ) = 5 + r^2 \cos(2\theta).
\]
Note that $x= 0 , y = 1$ means $r = 1$ and $\theta = \frac{\pi}{2}$. Thus,
\[
u(0,1) = u \left(1, \frac{\pi}{2}\right) = 5 - 1 = 4.
\]