Problem: Let $f$ be a nonconstant analytic function in a domain $\Omega $. Show that $\vert f \vert $ cannot have a local maxima in $\Omega $.
Solution: Let $z_0 \in \Omega $ be a local maxima of $\vert f \vert$. Since $f$ is analytic in $\Omega $ consider its power series around $z= z_0$,
\[
f(z) = \sum_{n=0}^{\infty} a_n \left( z - z_0 \right) ^n,\quad a_n \in \mathbb{C} .
\]
Then, $f(z_0) = a_0$ and as $r \rightarrow 0$ due to continuity of $f$, for every $\theta \in \mathbb{R} $
\[
f\left( z_0 + r e^{\iota \theta } \right) \rightarrow f\left( z_0 \right) = a_0.
\]
Therefore, for small enough $r$, and for any $\theta \in \mathbb{R} $
\begin{equation}\label{eq:20Aug2024-1}
\left\vert f\left( z_0 + r e^{\iota \theta } \right) \right\vert^2 \leq \left\vert a_0 \right\vert ^2.
\end{equation}
Now we recall that Parseval's identity for the above function,
\[
\frac{1}{2\pi } \int _0^{2\pi } \left\vert f\left( re^{\iota \theta } \right) ^2 \right\vert \mathrm{d} \theta = \sum_{n=0}^{\infty} \vert a_n \vert ^2 r^{2n},\quad 0 < r < R,
\]
where $R$ is the radius of convergence of the power series of $f$. Therefore,
\begin{align*}
\int _0^{2\pi } \left\vert f\left( z_0 + r e^{\iota \theta} \right) \right\vert \mathrm{d} \theta & = 2\pi \sum_{n=0}^{\infty} \vert a_n \vert ^2 r^{2n} .
\end{align*}
Also, using \eqref{eq:20Aug2024-1}, we have
\begin{align*}
\int _0^{2\pi } \left\vert f\left( z_0 + r e^{\iota \theta} \right) \right\vert \mathrm{d} \theta \leq 2\pi \vert a_0 \vert ^2.
\end{align*}
Thus, for sufficiently small $r$
\begin{align*}
2\pi \sum_{n=0}^{\infty} \vert a_n \vert ^2 r^{2n} \leq 2\pi \vert a_0 \vert ^2 ,
\end{align*}
which implies $a_1 = a_2 = \dots = 0$, and hence $f$ is constant, a contradiction.