17-08-2024

Problem: For a fixed $c \in \mathbb{R} $, let \[ \alpha = \int _0^2 \left( 9x^2 - 5cx^4 \right) \mathrm{d} x. \] If the value of $\int _0^2 \left( 9x^2 - 5cx^4 \right) \mathrm{d} x$ obtained by using the Trapezoidal rule is equal to $\alpha $, then the value of $c$ is ______________ (rounded off to 2 decimal places).
Solution: The given integral will be \begin{align*} \alpha & = \int_0^2 \left( 9x^2 - 5c x^4 \right) \mathrm{d} x \\ & = \left[ 3x^3 - c x^5 \right] _0^2 \\ & = 24 - 32 c. \end{align*} It is also given that the value of the integral by the Trapezoidal rule is equal to $\alpha $. We recall that the Trapezoidal rule is given by \[ \int_a^b f(x)\mathrm{d} x = \frac{b-a}{2}\left[ f(b) - f(a) \right] . \] So, we have \begin{align*} & 24 - 32c = \int_0^2 \left( 9x^2 - 5cx^4 \right) \mathrm{d} x \\ \implies & 24 - 32c = \frac{2+0}{2}\left[ 36 - 80c \right] \\ \implies & 24 - 32c = 36 - 80c \\ \implies & 48c = 12 \\ \implies & c = \frac{12}{48} = \frac{1}{4} = 0.25. \end{align*} Therefore, the value of $c$ will be $0.25$.