Problem: Given that $y = x$ is a solution to the differential equation
\[
x^3 y''' - 3x^2 y'' + (6x - x^3) y' + (x^2 - 6) y = 0,
\]
find its general solution.
Solution: Let $y(x) = x \cdot v(x)$ be the solution of the given differential equation. We need to determine $v(x)$. Then we have
\begin{align*}
y'(x) & = xv'(x) + v(x) \\
y''(x) & = xv''(x) + 2v'(x) \\
y'''(x) & = xv'''(x) + 3v''(x).
\end{align*}
Therefore, the given differential equation reduces to
\begin{align*}
& x^3 \left( 3v'' + xv''' \right) - 3x^2 \left( 2v' + xv'' \right) \\
& \kern 2cm + (6x - x^3) \left( v + xv' \right) + \left( x^2 - 6 \right) xv = 0 \\
\implies & x^4 v''' + v''\left( 3x^3 - 3x^3 \right) + v'\left( -6x^2 + 6x^2 - x^4 \right) \\
& \kern 2cm + v\left( 6x - x^3 + x^3 - 6x \right) = 0 \\
\implies & x^4 \left( v''' - v' \right) = 0 .
\end{align*}
This implies $v'''(x) - v'(x) = 0$, and the solution to this differential equation is
\[
v(x) = c_1 + c_2 e^x + c_3 e^{-x}.
\]
Therefore, the solution of the given differential equation will be
\[
y(x) = c_1 x + c_2 x e^x + c_3 x e^{-x}.
\]