Solution: We will use the method of residue to compute the given integral. Look at the
residue theorem. Here the function
\[
f(z) = \frac{\sin \pi z}{z^2 + 1} = \frac{\sin \pi z}{(z + \iota )(z - \iota )}
\]
has simple pole at $z = \pm \iota $. Therefore, using the
residue theorem (b), we have
\begin{align*}
\mathrm{Res} (f, \iota ) & = \lim_{z \to i} (z - \iota ) \frac{\sin \pi z}{z^2 + 1} \\
& = \lim_{z \to \iota} \frac{\sin \pi z}{z + \iota } \\
& = \frac{\sin \pi \iota }{2\iota }; \\[2ex]
\mathrm{Res} (f, -\iota ) & = \lim_{z \to -i} (z + \iota ) \frac{\sin \pi z}{z^2 + 1} \\
& = \lim_{z \to -\iota} \frac{\sin \pi z}{z - \iota } \\
& = \frac{\sin (-\pi \iota) }{-2\iota } = \frac{\sin \pi \iota }{2\iota }.
\end{align*}
Thus,
\begin{align*}
\int_\gamma \frac{\sin \pi z}{z^2 + 1}\mathrm{d} z & = 2\pi \iota \left( \mathrm{Res} (f,\iota ) + \mathrm{Res} (f,-\iota ) \right) \\
& = 2\pi \iota \left( \frac{\sin \pi \iota }{2\iota } + \frac{\sin \pi \iota }{2\iota } \right) \\
& = 2\pi \sin \pi \iota .
\end{align*}