Problem: Let $y(t)$ be the solution of the initial value problem 
                    \[
                        y'' + 4y = 
                        \begin{cases}
                            t, &\text{ if } 0 \leq t \leq 2,\\
                            2, &\text{ if } 2 < t < \infty ,
                        \end{cases}
                        \text{ and } y(0) = y'(0) = 0.
                    \]
                    If $\alpha = y \left( \frac{\pi}{2} \right) $, then the value of $\frac{4}{\pi } \alpha $ is _____________ (rounded off to $2$ decimal places). 
                  
                 
              
                
                
                
                  
                    Solution: We will use the Laplace transformation to solve this problem. Let us recall that the Laplace transformation of $f$ is given by 
                    \[
                        F(s) \coloneqq \mathcal{L} \{ f (t)\} = \int _0^{\infty} f(t) e^{-st}\mathrm{d} t. 
                    \]
                    Also, we have 
                    \begin{align*}
                        \mathcal{L} \{ f'(t) \} & = sF(s) - f(0) \\
                        \mathcal{L} \{ f''(t) \} & = s^2F(s) - sf(0) - f'(0).
                    \end{align*}
                    The given differential equation is 
                    \[
                        y'' + 4y = f(t) = 
                        \begin{cases}
                            t, &\text{ if } 0 \leq t \leq 2,\\
                            2, &\text{ if } 2 < t < \infty .
                        \end{cases}
                    \]
                  
                  
                  
                  
                    Let us find the Laplace transformation of $f(t)$. 
                    \begin{align*}
                        \mathcal{L} \{ f(t) \}  & = \int _0^{\infty} f(t) e^{-s t}\mathrm{d} t\\
                                        & = \textcolor{blue}{\int _0^{2} t e^{-s t}\mathrm{d} t} +\textcolor{magenta}{ \int _2^{\infty} 2 e^{-st}\mathrm{d} t}\\[1ex]
                                        & = \textcolor{blue}{\left[ -\frac{t}{s}e^{-ts} \right] _0^2 - \left[ \frac{1}{s^2}e^{-ts} \right]_0^2 } + \textcolor{magenta}{\left[- \frac{2e^{-ts}}{s} \right]_2^{\infty}  } \\[1ex]
                                        & = \textcolor{blue}{-\frac{2}{s}e^{-s} - \left( \frac{e^{-2s}}{s^2} - \frac{1}{s^2} \right) } - \textcolor{magenta}{\left( 0 - \frac{2e^{e^{-2s}}}{s} \right) } \\[1ex]
                                        & = \textcolor{blue}{\frac{1}{s^2} - \frac{(2s+1)}{s^2}e^{-2s}} + \textcolor{magenta}{\frac{2}{s} e^{-2s}} \\[1ex]
                                        & = \frac{1}{s^2} - \frac{1}{s^2}e^{-2s}.
                    \end{align*} 
                  
                  
                  
                  
                    We now take the Laplace transformation of the given differential equation and write $\mathcal{L} \{ y(t) \} = Y(s) $. 
                    \begin{align*}
                        & s^2 Y(s) - sy(0) - y'(0) + 4Y(s) = \frac{1}{s^2} - \frac{1}{s^2}e^{-2s} \\
                        \implies & s^2 Y(s) + 4Y(s) = \frac{1}{s^2} - \frac{1}{s^2}e^{-2s} \\
                        \implies & Y(s) = \frac{1}{s^2(s^2+4)} - \frac{e^{-2s}}{s^2 (s^2 + 4)} \\
                        \implies & y(t) = \mathcal{L} ^{-1} \left\{ \frac{1}{s^2(s^2+4)} - \frac{e^{-2s}}{s^2 (s^2 + 4)} \right\} .
                    \end{align*}
                  
                  
                  
                  
                    So, we need to find the inverse Laplace transformation. Consider the first term.
                    \begin{align*}
                        \mathcal{L} ^{-1} \left\{ \frac{1}{s^2}\cdot \frac{1}{(s^2+4)} \right\}.
                    \end{align*}
                    We have 
                    \[
                        \mathcal{L} ^{-1} \left\{ \frac{1}{s^2 + 2^2} \right\} = \frac{1}{2}\sin 2t.
                    \]
                    Now we recall that 
                    \[
                        \int_0^t f(\tau)\mathrm{d} \tau = \mathcal{L} ^{-1} \left\{ \frac{1}{s}F(s) \right\} .
                    \]
                    Applying the above formula twice, we get
                    \begin{align*}
                        \mathcal{L} ^{-1} \left\{ \frac{1}{s}\cdot \frac{1}{s^2 + 4} \right\} & = \int_0^t \frac{1}{2}\sin 2\tau \mathrm{d} t\\
                        & = \left[-\frac{1}{4}\cos 2\tau\right]_0^t \\
                        & = \frac{1}{4}\left( 1 - \cos 2t \right) .
                    \end{align*}
                    Now again applying the same, we get
                    \begin{align*}
                        \mathcal{L} ^{-1} \left\{ \frac{1}{s}\cdot \frac{1}{s\left( s^2 + 4 \right) } \right\} & = \frac{1}{4} \int_0^t (1 - \cos 2t) \mathrm{d} t\\
                        & = \frac{1}{4}\left[ t - \frac{\sin 2\tau}{2} \right]_0^t \\
                        & = \frac{t}{4} - \frac{\sin 2t}{t^3}.
                    \end{align*}
                    Thus, 
                    \[
                        \mathcal{L} ^{-1} \left\{ \frac{1}{s^2(s^2+4)} \right\} = \frac{t}{4} - \frac{\sin 2t}{t^3}.
                    \]
                  
                  
                  
                  
                    We now need to obtain the inverse Laplace transformation of $\frac{e^{-2s}}{s^2 (s^2 + 4)}$. Recall that 
                    \[
                        \mathcal{L} ^{-1} \left\{ \frac{e^{-as}}F(s) \right\} = u(t - a)f(t-a),
                    \]
                    where 
                    \[
                        u(t -a ) = 
                        \begin{cases}
                            0, &\text{ if } t < a ;\\
                            1, &\text{ if } t > a.
                        \end{cases}
                    \]
                    Therefore, 
                    \begin{align*}
                        \mathcal{L} ^{-1} \left\{ \frac{e^{-2s}}{s^2(s^2 + 4)} \right\} & = u(t-2) \left( \frac{t-2}{4} - \frac{\sin 2(t-2)}{(t-2)^3} \right) .
                    \end{align*}
                    Therefore, 
                    \begin{align*}
                        y(t) & = \mathcal{L} ^{-1} \left\{ \frac{1}{s^2(s^2+4)} - \frac{e^{-2s}}{s^2 (s^2 + 4)} \right\} \\
                        & = \frac{t}{4} - \frac{\sin 2t}{t^3} - u(t-2) \left( \frac{t-2}{4} - \frac{\sin 2(t-2)}{(t-2)^3} \right).
                    \end{align*}
                    We need to find $y\left( \frac{\pi}{2} \right) $. Note that $\frac{\pi}{2} < 2$, so $u(t-2) = 0$. Therefore,   
                    \begin{align*}
                        \alpha = y\left( \frac{\pi }{2} \right) & = \frac{\pi }{8}.
                    \end{align*}
                    Hence,
                    \[
                        \frac{4}{\pi }\alpha = \frac{4}{\pi } \times \frac{\pi}{8} = \frac{1}{2} = 0.5.
                    \]