Problem: Let
\[
\frac{z}{1 - z - z^2} = \sum_{n=0}^{\infty} a_n z^n, \quad a_n \in \mathbb{R}
\]
for all $z $ in some neighbourhood of $0$ in $\mathbb{C} $. Then the value of $a_6 + a_5$ is equal to _______________.
Solution: Given that
\[
\frac{z}{1 - z - z^2} = \sum_{n=0}^{\infty} a_n z^n,
\]
we need to find $a_5 + a_6$. Note that
\begin{align*}
& \frac{z}{1 - z - z^2} = \sum_{n=0}^{\infty} a_n z^n \\
\implies & z = (1- z - z^2) \sum_{n=0}^{\infty} a_n z^n \\
\implies & z = (1 - z - z^2) \left( a_0 + a_1 z + a_2 z^2 + \dots \right) \\
\implies & z = \left( a_0 + a_1 z + a_2 z^2 + a_3 z^3 + \dots \right) \\
& \kern 0.6cm - \left( a_0 z + a_1 z^2 + a_2 z^3 + a_3 z^4 + \dots \right) \\
& \kern 0.6cm - \left( a_0 z^2 + a_1 z^3 + a_2 z^4 + a_3 z^5 + \dots \right).
\end{align*}
Now comparing the coefficients, we get
\begin{align*}
& a_0 = 0 \\
& a_1 - a_0 = 1 \implies a_1 = 1 \\
& a_2 - a_1 - a_0 = 0 \implies a_2 = 1 \\
& a_3 - a_2 - a_1 = 0 \implies a_3 = 2 \\
& a_4 - a_3 - a_2 = 0 \implies a_4 = 3 \\
& a_5 - a_4 - a_3 = 0 \implies a_5 = 5 \\
& a_6 - a_5 - a_4 = 0 \implies a_6 = 8.
\end{align*}
Therefore,
\[
a_5 + a_6 = 13.
\]