30-07-2024

Problem: Let $f$ be a rational function of a complex variable $z$ given by \[ f(z) = \frac{z^3 + 2z -4}{z}. \] The radius of convergence of the Taylor series of $f$ at $z = 1$ is
  • $0$
  • $1$
  • $2$
  • $\infty$
Solution: Note that the above function can be written as \begin{align*} f(z) & = \frac{z^3 + 2z - 4}{z} \\ & = z^2 + 2 - \frac{4}{z} \\ & = (z-1)^2 +2z + 1 + 2 - \frac{4}{(z - 1) + 1} \\ & = (z - 1)^2 + 2(z - 1) + 5 - \frac{4}{(z - 1) + 1} . \end{align*} Therefore, the radius of convergence will be the same as for the $\frac{4}{(z - 1) + 1}$. \begin{align*} \frac{4}{(z - 1) + 1} = 4 \sum_{n=0}^{\infty} (-1)^n(z-1)^n. \end{align*} Thus, the radius of convergence will be $1$.