29-07-2024

Problem: The limit \[ \lim_{n \to \infty} \frac{1}{n}\left( 1 + \sqrt{2} + \sqrt[3]{3} + \dots + \sqrt[n]{n} \right) \]
  • is equal to $0$
  • is equal to $1$
  • is equal to $2$
  • does not exist
Solution: According to the Cauchy's limit theorem,
(Cauchy's Limit Theorem) If $\left( a_n \right) $ is a sequence such that $a_n \to a$, then \[ \lim_{n \to \infty} \frac{a_1 + a_2 + \dots + a_n}{n} = a. \]

Here $a_n = \sqrt[n]{n} $. So \[ \lim_{n \to \infty} \frac{1 + \sqrt{2} + \sqrt[3]{3} + \dots + \sqrt[n]{n}}{n} = \lim_{n \to \infty} \sqrt[n]{n}. \] We will prove that $\sqrt[n]{n} \rightarrow 1$. If $n>1$, then $\sqrt[n]{n} > 1$. Thus, for each $n > 1$, we can write \[ \sqrt[n]{n} = 1 + h_n, \] where $h_n$ is a positive number. Thus, \begin{align*} \sqrt[n]{n} = 1 + h_n & \implies n = \left( 1 + h_n \right) ^n \\ & \implies n = 1 + n h_n + \frac{n(n-1)}{2}h_n^2 + \dots + h_n^n \\ & \geq \frac{n(n-1)}{2}h_n^2. \end{align*} So we obtained \begin{align*} 0 \leq \frac{n(n-1)}{2} h_n^2 \leq n & \implies 0 \leq h_n^2 < \frac{2}{n-1}. \end{align*} From the Sandwich's theorem, \[ \lim_{n \to \infty} h_n^2 = 0 \implies \lim_{n \to \infty} h_n = 0. \] Therefore, \[ \lim_{n \to \infty} \sqrt[n]{n} = 1 \] and hence, \[ \lim_{n \to \infty} \frac{1 + \sqrt{2} + \sqrt[3]{3} + \dots + \sqrt[n]{n}}{n} = 1. \]