Problem: Let $A$ be a $4 \times 4$ matrix such that $-1,1,1-2$ are its eigenvalues. If $B = A^4 - 5A^2 + 5I$, then $\operatorname{trace}\left( A+B \right) $ equals
Solution: We will use the following facts:
-
If $\lambda$ is an eigenvalue of $A$ with an eigenvector $v$, then $\lambda ^k $ is an eigenvalue of $A^k$ with teh same eigenvector $v$.
-
Sum of eigenvalue of $A$ is equal to $\operatorname{trace}\left( A \right) $.
-
Trace is linear, that is, $\operatorname{trace}\left( A + B \right) = \operatorname{trace}\left( A \right) + \operatorname{trace}\left( B \right) $.
We need to determine $\operatorname{trace}\left( A +B \right) $. Note that
\begin{align*}
\operatorname{trace}\left( A + B \right) & = \operatorname{trace}\left( A \right) + \operatorname{trace}\left( B \right) \\
& = \operatorname{trace}\left( A \right) + \operatorname{trace}\left( A^4 - 5A^2 + 5I \right) \\
& = \operatorname{trace}\left( A \right) + \operatorname{trace}\left( A^4 \right) - 5 \operatorname{trace}\left( A^2 \right) + 5 \operatorname{trace}\left( I \right).
\end{align*}
Observe that
\begin{align*}
& \operatorname{trace}\left( A \right) = \text{ sum of eigenvalue of } A = -1 \\
& \operatorname{trace}\left( A^4 \right) = \text{ sum of eigenvalue of } A^4 = 19 \\
& \operatorname{trace}\left( A^2 \right) = \text{ sum of eigenvalue of } A^2 = 7 \\
& \operatorname{trace}\left( I \right) = \text{ sum of eigenvalue of } I = 4.
\end{align*}
Therefore,
\begin{align*}
\operatorname{trace}\left( A + B \right) & = \operatorname{trace}\left( A \right) + \operatorname{trace}\left( A^4 \right) - 5 \operatorname{trace}\left( A^2 \right) + 5 \operatorname{trace}\left( I \right) \\
& = -1 + 19 - 5 \times 7 + 5 \times 4 \\
& = 3.
\end{align*}