26-07-2024

Problem: The partial differential equation \[ \left( x^2 + y^2 -1 \right) \frac{\partial^2 u}{\partial x^2} + 2 \frac{\partial^2 u}{\partial x \partial y} + \left( x^2 + y^2 -1 \right) \frac{\partial^2 u}{\partial y^2} = 0 \] is
  • parabolic in the region $x^2 + y^2 > 2$
  • hyperbolic in the region $x^2 + y^2 > 2$
  • elliptic in the region $0 < x^2 + y^2 < 2$
  • hyperbolic in the region $0 < x^2 + y^2 < 2$
Solution: The given partial differential equation is \begin{equation}\label{eq:26July2024-1} \left( x^2 + y^2 -1 \right) \frac{\partial^2 u}{\partial x^2} + 2 \frac{\partial^2 u}{\partial x \partial y} + \left( x^2 + y^2 -1 \right) \frac{\partial^2 u}{\partial y^2} = 0 . \end{equation} Consider the PDE of the following form: \[ A \frac{\partial^2 u}{\partial x^2} + B \frac{\partial^2 u}{\partial x \partial y} + C \frac{\partial^2 u}{\partial y^2} + D \frac{\partial u}{\partial x} + E \frac{\partial u}{\partial y} + F u = G. \] We have the following characterization.
  • $B^2 - 4AC > 0$, the PDE is hyperbolic.
  • $B^2 - 4AC = 0$, the PDE is parabolic.
  • $B^2 - 4AC < 0$, the PDE is elliptic.

Here in the given PDE, we have \[ A = x^2 + y^2 - 1, \quad B = 2 \text{ and } C = x^2 + y^2 - 1. \] Then, \begin{align*} B^2 - 4AC & = 4 - 4 (x^2 + y^2 -1)^2. \end{align*} So,
  • The equation will be hyperbolic if \begin{align*} B^2 - 4AC > 0 & \implies 4 - 4 (x^2 + y^2 - 1)^2 > 0\\ & \implies (x^2 + y^2 - 1)^2 < 1 \\ & \implies -1 < x^2 + y^2 - 1 < 1 \\ & \implies 0 < x^2 + y^2 < 2. \end{align*}
  • The equation will be parabolic if \begin{align*} B^2 - 4AC > 0 & \implies 4 - 4 (x^2 + y^2 - 1)^2 = 0\\ & \implies (x^2 + y^2 - 1)^2 = 0 \\ & \implies x^2 + y^2 = 1. \end{align*}
  • The equation will be elliptic if \begin{align*} B^2 - 4AC > 0 & \implies 4 - 4 (x^2 + y^2 - 1)^2 < 0\\ & \implies (x^2 + y^2 - 1)^2 > 1. \end{align*}
Therefore, the option D is the correct option.