Problem: Let $\mathbb{Z} _{10}$ and $\mathbb{Z} _{15}$ are homomorphic images of a group $G$. What can be concluded about the order of $G$. Also, generalize this.
Solution: Let $\phi : G \to \mathbb{Z} _{10}$ be $\psi : G \to \mathbb{Z} _{15}$ be surjective homomorphisms. From the first isomorphism theorem,
\[
\frac{G}{\ker \phi } \cong \mathbb{Z} _{10} \quad \text{ and }\quad \frac{G}{\ker \psi } \cong \mathbb{Z} _{15}.
\]
Therefore,
\[
\left\vert \frac{G}{\ker \phi } \right\vert = 10 \quad \text{ and } \quad \left\vert \frac{G}{\ker \psi } \right\vert = 15,
\]
which implies
\begin{align*}
\frac{\vert G \vert }{10} = \vert \ker \phi \vert \quad \text{ and } \quad \frac{\vert G \vert }{15} = \vert \ker \psi \vert.
\end{align*}
Hence,
\[
10 \mid \vert G \vert \text{ and } 15 \mid \vert G \vert \implies \mathrm{lcm} (10,15) = 30 \mid \vert G \vert
\]
In general, if $\mathbb{Z} _m$ and $\mathbb{Z} _n$ are homomorphic images of $G$, then $\mathrm{lcm}(m,n) $ must divide the order of $G$. It can be further generalize as if $H_1$ and $H_2$ are two groups of order $m$ and $n$ are homomorphic images of $G$, then $\mathrm{lcm}(m,n) $ must divide order of $G$.