Problem: Solve the differential equation
\[
x^2 \frac{\mathrm{d}^3 y}{\mathrm{d}x^3} + 2x \frac{\mathrm{d}^2y}{\mathrm{d}x^2} + 2 \frac{y}{x} = 10 \left( 1 + \frac{1}{x^2} \right) .
\]
Solution: We want to solve the equation
\begin{equation}\label{eq:19July2024-1}
x^2 \frac{\mathrm{d}^3 y}{\mathrm{d}x^3} + 2x \frac{\mathrm{d}^2y}{\mathrm{d}x^2} + 2 \frac{y}{x} = 10 \left( 1 + \frac{1}{x^2} \right).
\end{equation}
Multiplying \eqref{eq:19July2024-1} by $x$, we get
\[
x^3 \frac{\mathrm{d}^3 y}{\mathrm{d}x^3} + 2x^2 \frac{\mathrm{d}^2y}{\mathrm{d}x^2} + 2 y = 10 \left( x + \frac{1}{x} \right).
\]
Using the $D \equiv \frac{\mathrm{d}}{\mathrm{d}x} $ operator, we can rewrite the above equation as
\begin{equation}\label{eq:19July2024-2}
\left( x^3 D^3 + 2x^2 D^2 + 2 \right) y = 10 \left( x + \frac{1}{x}. \right)
\end{equation}
Let $x = e^z$. So, $z = \log x$. Let $D_1 \equiv \frac{\mathrm{d}}{\mathrm{d}z} $. Then we have
\begin{align*}
\frac{\mathrm{d}y}{\mathrm{d}x} & = \frac{\mathrm{d}y}{\mathrm{d}z} \cdot \frac{\mathrm{d}z}{\mathrm{d}x} = \frac{1}{x} \frac{\mathrm{d}y}{\mathrm{d}z} = e^{-z} \frac{\mathrm{d}y}{\mathrm{d}z} \\
& = e^{-z}D_1 y \\[2ex]
\frac{\mathrm{d}^2y}{\mathrm{d}x^2} & = \frac{\mathrm{d}}{\mathrm{d}x} \left( \frac{1}{x}\frac{\mathrm{d}y}{\mathrm{d}z} \right) = \frac{\mathrm{d}}{\mathrm{d}z} \left( e^{-z} \frac{\mathrm{d}y}{\mathrm{d}z} \right) \cdot \frac{\mathrm{d}z}{\mathrm{d}x} \\
& = \left( -e^{-z} \frac{\mathrm{d}y}{\mathrm{d}z} + e^{-z}\frac{\mathrm{d}^2y}{\mathrm{d}z^2} \right) e^{-z} \\
& = e^{-2z} \left( \frac{\mathrm{d}^2y}{\mathrm{d}z^2} - \frac{\mathrm{d}y}{\mathrm{d}z} \right) \\
& = e^{-2z}\left( D_1^2 - D_1 \right) y\\[2ex]
\frac{\mathrm{d}^3y}{\mathrm{d}x^3} & = \frac{\mathrm{d}}{\mathrm{d}x} \left[ e^{-2z} \left( \frac{\mathrm{d}^2y}{\mathrm{d}z^2} - \frac{\mathrm{d}y}{\mathrm{d}z} \right) \right] \\
& = e^{-3z} \left[ -2 \left( \frac{\mathrm{d}^2y}{\mathrm{d}z^2} - \frac{\mathrm{d}y}{\mathrm{d}z} \right) + \frac{\mathrm{d}^3y}{\mathrm{d}z^3} - \frac{\mathrm{d}^2y}{\mathrm{d}z^2} \right] \\
& = e^{-3z} \left( D_1^3 - 3D_1^2 + 2D_1 \right) y.
\end{align*}
Thus, the given differential equation \eqref{eq:19July2024-2} will be
\begin{align*}
& \left( D_1^3 - 3D_1^2 + 2D_1 \right) y + 2\left( D_1^2 - D_1 \right)y + 2y = 10 \left( e^z + e^{-z} \right) \\
\implies & \left( D_1^3 - D_1^2 + 2 \right) y = 10 \left( e^z + e^{-z} \right) .
\end{align*}
The auxiliary equation is
\begin{align*}
m^3 - m^2 + 2 = 0 & \implies (m + 1)(m^2 -2m + 2) = 0 \\
& \implies m = -1 \text{ or } m = 1 \pm \iota .
\end{align*}
Therefore,
\begin{align*}
y_{\mathsf{CF} } & = c_1 e^{-z} + e^z \left( c_2 \cos z + c_3 \sin z \right) \\
& = \frac{c_1}{x} + x \left( c_2 \cos \log x + c_{3\sin \log x} \right) .
\end{align*}
Now we will find the particular integral. The particular integral corresponding to $10e^z$ will be given by
\begin{align*}
10\cdot \frac{1}{(D_1 + 1)(D_1^2 - 2D_1 + 2)}e^ z & = \frac{10}{(1 + 1)(1 - 2 + 2)}e^z \\
& = 5e^z = 5x.
\end{align*}
Similarly, the particular integral corresponding to $10e^{-z}$ will be
\begin{align*}
& 10 \cdot \frac{1}{(D_1 + 1)(D_1^2 - 2D_1 + 2)}e^ {-z} \\
= & \frac{10}{D_1 + 1}\cdot \frac{1}{1 + 2 + 2}e^{-z}\\
= & \frac{2}{D_1 + 1}e^{-z} \\
= & 2e^{-z} \frac{1}{D_1 - 1 + 1}\cdot 1 \\
= & 2e^{-z} \frac{1}{D_1}\cdot 1 \\
= & 2e^{-z} z = \frac{2}{x}\log x.
\end{align*}
Therefore,
\[
y(x) = \frac{c_1}{x} + x \left( c_2 \cos \log x + c_{3\sin \log x} \right) + 5x + \frac{2}{x}\log x.
\]