Solution: We recall that if $f$ is a holomorphic function in the punctured disc $\mathbb{D} (a,r) - \{ a \} $, then the
residue of $f$ at $a$ is the coefficient of $(z-a)^{-1} $ in the Laurent series of $f$ around $a$. We have the following important result to find out the residue.
Let $f$ be a holomorphic function in the punctured disc $\mathbb{D} (a,r) - \{ a \} $.
-
If $f(z)$ has a removable singularity at $a$, then
\[
\mathrm{Res}(f(z); a) = 0.
\]
-
If $a$ is a simple pole of $f(z)$, then
\[
\mathrm{Res} (f(z); a) = \lim_{z \to a} (z - a) f(z).
\]
-
If $a$ is a pole of order $k (k \geq 2)$ for $f(z)$, then
\[
\mathrm{Res} (f(z); a) = \frac{1}{(k-1)!} \lim_{z \to a} \left[ \frac{\mathrm{d}^{k-1}}{\mathrm{d}z^{k-1}}(z-a)^k f(z) \right] .
\]