Problem: Let $T: V \to W$ be a linear transformation between two finite dimensional vector spaces $V$ and $W$. Check whether the following statements are true or false. If it is true prove it and if false, then provide a counterexample.
-
If $Tv = \lambda v$ for some $\lambda \in \mathbb{R} $, then $v$ is an eigenvector with an eigenvalue $\lambda $.
-
If $v_1$ and $v_2$ are linearly independent eigenvectors corresponding to the eigenvalues $\lambda _1$ and $\lambda _2$, respectively. Then $\lambda _1 \neq \lambda _2$.
-
An eigenspace of $T$ is a null space of a certain matrix.