Problem: Compute the integral
\[
\int _0^x \frac{1}{1 + x}\mathrm{d} x
\]
correct up to three significant figures taking six intervals by Trapezoidal rule.
Solution: We recall that the Trapezoidal rule is given by
\[
\int _a^b f(x) \mathrm{d} x = \frac{h}{2}\left[ (y_0 + y_n) + 2 (y_1 + y_2 + \cdots + y_{n-1} ) \right],
\]
where
\[
x_n - x_{n-1} = h \text{ and } y_n = f(x_n).
\]
Here in the given problem,
\[
a = 0,\quad b = 1, \quad \text{and}\quad n = 6.
\]
So,
\[
h = \frac{b-a}{n} = \frac{1}{6}.
\]
Therefore, we have
\begin{align*}
x_0 = 0 & \implies y_0 = f(x_0) = f(0) = 1 \\
x_1 = x_0 + h = \frac{1}{6} & \implies y_1 = f(x_1) = 0.14286 \\
x_2 = x_1 + h = \frac{2}{6} & \implies y_2 = f(x_2) = 0.25000 \\
x_3 = x_2 + h = \frac{3}{6} & \implies y_3 = f(x_3) = 0.33333 \\
x_4 = x_3 + h = \frac{4}{6} & \implies y_4 = f(x_4) = 0.40000 \\
x_5 = x_4 + h = \frac{5}{6} & \implies y_5 = f(x_5) = 0.45454 \\
x_6 = x_5 + h = 1 & \implies y_6 = f(x_6) = 0.50000.
\end{align*}
Thus, by the Trapezoidal rule, we have
\begin{align*}
I & = \frac{h}{2} \left[ (y_0 + y_6) + 2 (y_1 + y_2 + y_3 + y_4 + y_5)\right] \\
& = 0.30512.
\end{align*}
Thus,
\[
\textcolor{teal}{\boxed{I = 0.305 \text{ correct up to three significant figures}}}
\]