Problem: Let
\[
H = \left\{
\begin{bmatrix}
a + \iota b & c + \iota d \\
-c + \iota d & a - \iota b \\
\end{bmatrix}: a,b, c, d\in \mathbb{Z}
\right\} .
\]
Find the units in $H$.
Solution: Let
\[
A =
\begin{bmatrix}
a + \iota b & c + \iota d \\
-c + \iota d & a - \iota b \\
\end{bmatrix}
\]
be a unit in $H$. Therefore, $A^{-1} \in H$. Since $A^{-1} $ exists, the determinant of $A$ must be nonzero, that is, $a^2 + b^2 + c^2 + d^2 \neq 0$. Note that
\[
A^{-1} = \frac{1}{a^2 + b^2 + c^2 + d^2}
\begin{bmatrix}
a - \iota b & -c - \iota d \\
c - \iota d & a + \iota b \\
\end{bmatrix} \in H.
\]
So $A^{-1} \in H \iff a^2 + b^2 + c^2 + d^2 \in \mathbb{Z} $. Since $a,b,c,d\in \mathbb{Z} $, the following are the possibilities.
\begin{align*}
a = \pm 1,\ b = c = d = 0 \\
b = \pm 1,\ a = c = d = 0 \\
c = \pm 1,\ a = b = d = 0 \\
d = \pm 1,\ a = b = c = 0.
\end{align*}
Therefore, the units in $H$ are
\begin{align*}
\begin{bmatrix}
\pm 1 & 0 \\
0 & \pm 1 \\
\end{bmatrix},
\begin{bmatrix}
\pm \iota & 0 \\
0 & \mp \iota \\
\end{bmatrix},
\begin{bmatrix}
0 & \pm 1 \\
\mp 1 & 0 \\
\end{bmatrix},
\begin{bmatrix}
0 & \pm \iota \\
\pm \iota & 0\\
\end{bmatrix}.
\end{align*}