23-06-2024

Problem: Let $\mathcal{P} _3$ be the space of all real polynomials with degree at most $3$. Consider the homomorphism \begin{gather*} T: \mathcal{P} _3 \rightarrow \mathcal{P} _3, \\ a_0 + a_1 x + a_2 x^2 + a_3 x^3 \mapsto a_0 + (a_0 + a_1)x + (a_2 + a_3)x^3. \end{gather*} Find the following.
  • The kernel of $T$ and hence determine the nullity of $T$.
  • $T^{-1} \{ 2- x^3 \} $ and
  • $T^{-1} \{ 1 + x^2 \} $.
Solution: Given that the map $T$ is a homomorphism.
  • Recall that the kernel of a homomorphism is the collection of all elements which maps to zero. That is, \begin{align*} \ker T & = \left\{ p(x) \in \mathcal{P} _3: T(p(x)) = 0 \right\}. \end{align*} Let $p(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$. Then, \begin{align*} \ker T & = \left\{ p(x) \in \mathcal{P}_3 : a_0 + (a_0 + a_1) x + (a_2 + a_3) x^3 = 0 \right\} \\ & = \left\{ p(x) \in \mathcal{P} _3: a_0 = a_0 + a_1 = a_2 + a_3 = 0 \right\} . \end{align*} So, we have \begin{align*} & a_0 = 0 \\ & a_0 + a_1 = 0 \implies a_1 = 0 \\ & a_2 + a_3 = 0 \implies a_2 = -a_3. \end{align*} Thus, \[ \ker T = \left\{ a_2 x^2 - a_2 x^3 : a_2 \in \mathbb{R} \right\}. \] Therefore, A basis for the null space is $\{ x^2 - x^3 \} $. Hence, the nullity of $T$ is $1$.

  • We need to determine the inverse image of $2 - x^3$. Let \begin{align*} & a_0 + a_1 x + a_2 x^2 + a_3 x^3 \in T^{-1} \{ 2 - x^3 \} \\ \implies & T\left( a_0 + a_1 x + a_2 x^2 + a_3 x^3 \right) = 2 - x^3 \\ \implies & a_0 + (a_0 + a_1)x + (a_2 + a_3) x^3 = 2 - x^3 \\ \implies & a_0 = 2, \ a_0 + a_1 = 0,\ a_2 + a_3 = -1 \\ \implies & a_0 = 2,\ a_1 = -2, \ a_3 = a_2 - 1. \end{align*} Thus, \[ T^{-1} \{ 2 - x^3 \} = \left\{ 2 - 2x + a x^2 - (a - 1)x^3: a \in \mathbb{R} \right\} . \]

  • We need to determine the inverse image of $1 + x^2$. Note that for any $p(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3\in \mathcal{P} _3$, the coefficient of $x^2$ in $T(p(x))$ is $0$. So $T(p(x)) = 1 + x^2$ is not possible for any $p(x)$. Therefore, $T^{-1} \left\{ 1 + x^2 \right\} = \emptyset $.