16-06-2024

Problem: Let $T:\mathbb{R} ^3 \to \mathbb{R} ^3$ be a linear transformation such that \[ T\left( \begin{bmatrix} 1 \\ 1 \\ 1 \\ \end{bmatrix} \right) = \begin{bmatrix} 1 \\ -1 \\ 1 \\ \end{bmatrix}, \quad T^2\left( \begin{bmatrix} 1 \\ 1 \\ 1 \\ \end{bmatrix} \right) = \begin{bmatrix} 1 \\ 1 \\ 1 \\ \end{bmatrix}, \text{ and } \quad T^2\left( \begin{bmatrix} 1 \\ 1 \\ 2 \\ \end{bmatrix} \right) = \begin{bmatrix} 1 \\ 1 \\ 1 \\ \end{bmatrix}. \] Then the rank of $T$ is ______________.
Solution: Let us denote \[ \mathbf{v} _1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ \end{bmatrix}, \mathbf{v} _2 = \begin{bmatrix} 1 \\ -1 \\ 1 \\ \end{bmatrix}, \text{ and } \mathbf{v} _3 = \begin{bmatrix} 1 \\ 1 \\ 2 \\ \end{bmatrix}. \] Then we have \begin{align*} T(\mathbf{v} _1) = \mathbf{v} _2 & \implies T(\mathbf{Tv} _1) = T(\mathbf{v} _2) \\ & \implies T(\mathbf{v} _2) = T^2(\mathbf{v} _1) = \mathbf{v} _1. \end{align*} Thus, $\mathbf{v} _1, \mathbf{v} _2$ are in the image of $T$. As they are linearly independent, $\operatorname{rank}(T) \geq 2$. Now note that \begin{align*} T^2(\mathbf{v} _3) - T^2(\mathbf{v} _1) = 0 & \implies T^2(\mathbf{v} _3 - \mathbf{v} _1) = 0 \\ & \implies T^2(e_3) = 0, \end{align*} where $e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ \end{bmatrix}$. Thus, $0$ is an eigenvalue of $T^2$, which implies $0$ is an eigenvalue of $T$ and hence $\operatorname{rank}(T)\leq 2 $. Therefore, we proved that $\operatorname{rank}(T) = 2$.