Problem: If $D = \frac{\mathrm{d}}{\mathrm{d}x} $ is the differential operator, then solve the following differential equation.
\[
(D-1)(D^2 - 2D +2)y = e^x .
\]
Solution: We need to solve the differential equation
\begin{equation}\label{eq:14June2024-1}
(D-1)(D^2 - 2D +2)y = e^x .
\end{equation}
The corresponding auxiliary equation is
\begin{align*}
(m-1)(m^2 - 2m + 2) = 0.
\end{align*}
The roots of the auxiliary equation are $1, 1 + \iota $, and $1-\iota $. Thus, the complimentary function, that is, the solution corresponding to the homogeneous equation will be
\begin{equation}\label{eq:14June2024-2}
y_{\mathsf{cf} } = c_1 e^x + e^x \left( c_2 \cos x + c_3 \sin x \right) .
\end{equation}
Let us recall a working rule for finding the particular integral of $f(D)y = e^{ax}$.
-
If $f(a)\neq 0$, then
\[
y_{\mathsf{PI} }(x) = \frac{1}{f(D)} e^{ax} = \frac{1}{f(a)}e^{ax}.
\]
-
If $f(D) = 0$, then the following two cases arise:
-
If $f(D) = (D-a)^n$, then the particular integral will be
\[
y_{\mathsf{PI} }(x) = \frac{1}{(D-a)^n}e^{ax} = \frac{x^n}{n!}e^{ax}, \quad n\in \mathbb{N} .
\]
-
If $f(D) = (D-a)^r \phi (D)$, where $\phi (a)\neq 0$ and $r \in \mathbb{N} $, then
\begin{align*}
y_{\mathsf{PI} }(x) & = \frac{1}{(D-a)^r \phi (D)} e^{ax} \\
& = \frac{1}{(D-a)^r} \cdot \frac{1}{\phi (a)}e^{ax} \\
& = \frac{1}{\phi (a)} \cdot \frac{x^r}{r!} \cdot e^{ax}.
\end{align*}
Now using the above method, if $f(D) = (D-1)(D^2 - 2D +2)$, then we have
\begin{align*}
y_{\mathsf{PI} } & = \frac{1}{ (D-1)(D^2 - 2D +2)} e^x \\
& = \frac{1}{D - 1} \cdot \frac{1}{D^2 - 2D + 2 } e^x \\
& = \frac{1}{D-1} \frac{e^x}{1-2+2} = \frac{1}{D-1} e^x \\
& = \frac{x}{1!} e^x = xe^x.
\end{align*}
Thus, the solution to the differential equation \eqref{eq:14June2024-1} will be
\[
y(x) = c_1 e^x + e^x \left( c_2 \cos x + c_3 \sin x \right) + xe^x.
\]