12-06-2024

Problem: Let $m,n$ be two positive integers such that $n$ divides $m$.
  • Prove that the map \[ \varphi : \mathbb{Z}/m\mathbb{Z} \to \mathbb{Z} / n\mathbb{Z},\ a + m\mathbb{Z} \mapsto a + n\mathbb{Z} \] is a well-defined surjective group homomorphism.
  • Determine the group structure of the kernel of $\varphi $.
Solution: We are given that $n \mid m$.
  • Let us prove that the map is well defined. That is, if $a + m\mathbb{Z} = b + m\mathbb{Z} $, then $a+n\mathbb{Z} = b + n\mathbb{Z} $. Equivalently, if $m \mid (b-a)$ then $n \mid (b-a)$. Since \[ m \mid (b-a) \text{ and } n \mid m \implies n \mid (b-a). \] Thus, the map is well defined.

    We now prove that $\varphi $ is a homomorphism. Before that we recall that the operation on the quotient group $\mathbb{Z} /n \mathbb{Z} $ is \[ (a + n\mathbb{Z}) + (b + n\mathbb{Z}) = (a + b) + n\mathbb{Z} . \] Consider \begin{align*} \varphi \left( (a + m\mathbb{Z}) + (b + m\mathbb{Z} ) \right) & = \varphi \left( (a+b) + m \mathbb{Z} \right) \\ & = (a + b) + n\mathbb{Z} \\ & = (a + n\mathbb{Z} ) + (b + n\mathbb{Z} ) \\ & = \varphi (a + m\mathbb{Z} ) + \varphi (b + m\mathbb{Z} ). \end{align*} Thus, the map is well defined.

    Now let us prove that $\varphi $ is surjective. Let $y + n\mathbb{Z} \in \mathbb{Z} /n\mathbb{Z} $. Then $y + m\mathbb{Z} \in \mathbb{Z} /m\mathbb{Z} $ and \[ \varphi (y + m\mathbb{Z} ) = y + n\mathbb{Z} . \]

  • Let us first find the kernel of the homomorphism. \begin{align*} \ker \varphi & = \left\{ a + m\mathbb{Z} : \varphi (a + m\mathbb{Z} ) = 0 \right\} \\ & = \left\{ a + m\mathbb{Z} : a + n \mathbb{Z} = 0 \right\} \\ & = \left\{ a + m \mathbb{Z} : n \mid a \right\}. \end{align*} Let us simplify the kernel that we obtained. If $a + m\mathbb{Z} \in \ker \varphi $, then $n \mid a$, that is, $a = nk$ for some $k \in \mathbb{Z} $. So, $a + m\mathbb{Z} = nk + m\mathbb{Z}$. As $n \mid m$, we can also write $m = nl$ for some $l \in \mathbb{Z} $. Thus we obtained \[ a + m\mathbb{Z} = nk + nl \mathbb{Z} . \] Thus, \[ \ker \varphi = \left\{ nk + nl \mathbb{Z} : k = 0,1,\dots, l-1 \right\}. \] So, the order of $\ker \varphi $ is $l$ and being a subgroup of a cyclic group it must be cyclic. Thus, \[ \ker \varphi \cong \mathbb{Z} /l\mathbb{Z} . \]