Problem: Let $\mathbb{H} = \{ z\in \mathbb{C} : \mathrm{Im}(z) > 0 \} $ and $\mathbb{D} = \{ z\in \mathbb{C}: |z|^2 \lt 1 \} $. Then,
\[
\sup \left\{ \left\vert f'(0) \right\vert : f \text{ is an analytic function from $\mathbb{D} $ to $\mathbb{H} $ and $f(0) = \frac{\iota }{2}$ } \right\}
\]
is equal to
- $\frac{1}{4}$
- $\frac{1}{2}$
- $1$
- $100$
Solution: Recall the
Schwarz lemma
Let $f$ be an analytic function on a unit disk such that
-
$\vert f(z) \vert \leq 1$ for all $z\in \mathbb{D} $;
-
$f(0) = 0$.
Then
\[
\vert f(z) \vert \leq z \quad \forall\ z\in \mathbb{D} \text{ and } \left\vert f'(0) \right\vert \leq 1.
\]
We also have a generalized version, called
Schwarz-Pick lemma.
Let $f$ be an analytic function on a unit disk such that
-
$\vert f(z) \vert \leq 1$ for all $z\in \mathbb{D} $;
-
$f(a) = b$ for some $a,b \in \mathbb{D} $.
Then
\[
\left\vert f'(a) \right\vert \leq \frac{1 - \vert a \vert ^2}{1 - \vert b \vert ^2}.
\]
Since the given function is a function from $\mathbb{D} $ to $\mathbb{H} $, we need to find an analytic function, say $g$, from $\mathbb{H} $ to $\mathbb{D} $ so that the composition $g\circ f$ is an analytic map from $\mathbb{D} $ to $\mathbb{D} $ and hence we can use any of the above results.
Take
\[
g(z) = \frac{z - \frac{\iota }{2}}{z + \frac{\iota }{2}} \text{ and } h(z) = \frac{z - \iota }{z + \iota }.
\]
Both of these functions are analytic and maps the upper half plane to the unit disk. Therefore, $g\circ f$ and $h \circ f$ are analytic functions on unit from unit disk to unit disk. We have
\begin{align*}
(g\circ f)'(z) & = g'(f(z)) \cdot f'(z) \\
& = \frac{\left( z + \frac{\iota }{2} \right) - \left( z - \frac{\iota }{2} \right) }{\left( z + \frac{\iota}{2} \right)^2 } \cdot f'(z) \\
& = \frac{\iota }{\left( z + \frac{\iota }{2} \right)^2 } \cdot f'(z) \\
\implies \left\vert (g\circ f)'(0) \right\vert & = \left\vert \frac{\iota }{\iota ^2 } \right\vert \left\vert f'(0) \right\vert = \vert f'(0) \vert .
\end{align*}
Since
\[
g \circ f(0) = g\left( \frac{\iota}{2} \right) = 0,
\]
by Schwarz Lemma, we conclude that
\begin{align*}
\left\vert (g\circ f)'(0) \right\vert \leq 1 & \left\vert f'(0) \right\vert \leq 1.
\end{align*}
Thus, the supremum will be $1$.
We could have also used the function $h\circ f$. We have
\begin{align*}
(h \circ f)'(z) & = \frac{(z + \iota ) - (z - \iota )}{(z + \iota )^2}\cdot f'(z) \\
& = \frac{2\iota }{(z + \iota )^2} f'(z) \\
\implies \vert (h \circ f)'(0) \vert & = \left\vert \frac{2\iota }{(z + \iota )^2} \right\vert \cdot \left\vert f'(0) \right\vert \\
& = \frac{8}{9} \vert f'(0) \vert .
\end{align*}
Therefore using Schwarz-Pick lemma, we have
\begin{align*}
& \vert (h\circ f)'(0) \vert \leq \frac{1- \vert (h\circ f)(0) \vert^2 }{1} \\
\implies & \frac{8}{9}\cdot \vert f'(0) \vert \leq 1 - \frac{1}{9} \\
\implies & \vert f'(0) \vert \leq 1.
\end{align*}