Problem: Solve the following differential equation.
\[
(3x + 2)^2 \frac{\mathrm{d}^2y}{\mathrm{d}x^2} + 5(3x + 2) \frac{\mathrm{d}y}{\mathrm{d}x} -3y = x^2 + x + 1.
\]
Solution: The given differential equation is
\begin{equation}\label{eq:07June2024-1}
(3x + 2)^2 \frac{\mathrm{d}^2y}{\mathrm{d}x^2} + 5(3x + 2) \frac{\mathrm{d}y}{\mathrm{d}x} -3y = x^2 + x + 1.
\end{equation}
In order to solve \eqref{eq:07June2024-1}, we first substitute
\begin{align*}
z = \ln (3x + 2) & \implies 3x + 2 = e^z \\
& \implies \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}z} \frac{\mathrm{d}z}{\mathrm{d}x} \\
& \implies \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3}{3x+2} \frac{\mathrm{d}y}{\mathrm{d}z}.
\end{align*}
Similarly,
\begin{align*}
\frac{\mathrm{d}^2y}{\mathrm{d}x^2} & = \frac{\mathrm{d}^2y}{\mathrm{d}z^2} \left( \frac{\mathrm{d}z}{\mathrm{d}x} ^2 \right) + \frac{\mathrm{d}^2z}{\mathrm{d}x^2} \frac{\mathrm{d}y}{\mathrm{d}z} \\
& = \frac{9}{(3x+2)^2} \frac{\mathrm{d}^2y}{\mathrm{d}z^2} - \frac{9}{(3x+2)^2}\frac{\mathrm{d}y}{\mathrm{d}z}.
\end{align*}
We will write $\frac{d}{dz} \eqqcolon D$. Therefore, \eqref{eq:07June2024-1} can be rewritten as
\begin{align*}
& \left[ 9\left( D^2 - D \right) + 15D - 3 \right] y = \left( \frac{e^z - 2}{3} \right) ^2 + \left( \frac{e^z - 2}{3} \right) + 1 \\[2ex]
\implies & \left( 9D^2 +6D - 3 \right) y = \left( \frac{e^z - 2}{3} \right) ^2 + \left( \frac{e^z - 2}{3} \right) + 1.
\end{align*}
Therefore, we get a simplified equation as
\begin{equation}\label{eq:07June2024-2}
\left( 9D^2 + 6D - 3 \right) y = \left( \frac{e^z - 2}{3} \right) ^2 + \left( \frac{e^z - 2}{3} \right) + 1.
\end{equation}
The auxiliary equation corresponding to \eqref{eq:07June2024-2} is
\[
9m^2 + 6m - 3 = 0 \implies 3(3m - 1)(m+1) = 0 \implies m = \frac{1}{3},-1.
\]
So, the complimentary function, which is the solution to the corresponding homogeneous equation, will be
\begin{align*}
y_{\mathsf{cf} } & = c_1e^{-z} + c_2 e^{\frac{z}{3}} \\
& = c_1 (3x + 2)^{-1} + c_2 (3x + 2)^\frac{1}{3}.
\end{align*}
Thus,
\begin{equation}\label{eq:07June2024-3}
y_{\mathsf{cf} } = \frac{c_1}{3x + 2} + c_2 \sqrt[3]{3x+2}.
\end{equation}
Here one can use the method of undetermined coefficient to find the particular solution. The particular solution will be
\[
y_{\mathsf{PI} } = \frac{A}{9}e^{2z} + \frac{B}{9} e^z + 7C.
\]
Now we can substitute this into the differential equation, to obtain the value of $A,B$ and $C$.
The other way to solve the particular integral. To find the particular integral let us first simply the right hand side of \eqref{eq:07June2024-2}.
\begin{align*}
\left( \frac{e^z - 2}{3} \right) ^2 + \left( \frac{e^z - 2}{3} \right) + 1 & = \frac{e^{2z} - e^z + 7}{9}.
\end{align*}
Now the particular integral will be
\begin{align*}
y_{\mathsf{PI} } & = \frac{e^{2z} - e^z + 7}{9\left( 9D^2 +6D - 3 \right)} \\[1ex]
& = \frac{1}{27(3D-1)(D+1)}\left( e^{2z} - e^z + 7 \right).
\end{align*}
We recall that if the particular integral has the form $ \frac{1}{f(D)}e^{ax}$, then
\[
\frac{1}{f(D)}e^{ax} = \frac{1}{f(a)}e^{ax}, \text{ when } f(a) \neq 0.
\]
If $f(D) = 27(3D-1)(D+1)$, then
\begin{align*}
y_{\mathsf{PI} } & = \frac{1}{f(2)}e^{2z} - \frac{1}{f(1)}e^z + \frac{7}{f(0)} \\
& = \frac{e^{2z}}{27\times 15} - \frac{e^z}{27\times 4} + \frac{7}{-27} \\
& = \frac{e^{2z}}{405} - \frac{e^z}{108} - \frac{7}{27} \\
& = \frac{(3x + 2)^2}{405} - \frac{3x + 2}{108} - \frac{7}{27}.
\end{align*}
Hence, the final solution will be
\[
y(x) = y_{\mathsf{cf} } + y_{\mathsf{PI} }.
\]