06-06-2024

Problem: Let $C([a,b])$ denotes the set of all continuous functions $f: [a,b] \to \mathbb{R} $. We define metrics on $C([a,b])$ as follows: \begin{align*} d_1(f,g) & = \int _a^b \vert f(x) - g(x) \vert \mathrm{d} x . \\[2ex] d_\infty (f,g) & = \sup _{x\in [a,b]} \vert f(x) - g(x) \vert . \end{align*} Compute $d_1(f,g)$ and $d_\infty (f,g)$, where $f,g\in C([0,1])$ are the functions defined by $f(x) = x^2$ and $g(x) = x^3$.
Solution: Note that \[ 0 \leq x \leq 1 \implies x^3 \leq x^2 \implies x^2 - x^3 \geq 0. \] Let us first compute the distance between $f$ and $g$ with respect $d_1$ metric. \begin{align*} d_1 (x^2, x^3) & = \int _0^1 \vert x^2 - x^3 \vert \mathrm{d} x \\ & = \int _0^1 \left( x^2 - x^3 \right) \mathrm{d} x \\ & = \left[ \frac{x^3}{3} - \frac{x^4}{4} \right]_0 ^1 \\ & = \left[ \frac{1}{3} - \frac{1}{4} \right] - 0 = \frac{1}{12}. \end{align*} Thus, \[ \textcolor{teal}{\boxed{ d_1 \left( x^22, x^3 \right) = \frac{1}{12} }} \]

Now we need to compute the distance with respect to $d_\infty $ metric. We have \[ d_\infty (x^2, x^3) = \sup _{x \in [0,1]} \left\vert x^2 - x^3 \right\vert = \max _{x\in [0,1]} \left( x^2 - x^3 \right) . \] We need to find the maximum value of the function $x^2 - x^3$. Let \[ h(x) = x^2 - x^3. \] Then \begin{align*} h'(x) = 2x - 3x^2 = 0 & \implies x \left( 2 - 3x \right) = 0 \\ & \implies x = 0 \text{ or } x = \frac{2}{3}. \end{align*} Also, \[ h''(x) = 2 - 6x \implies h''(0) = 2, \text{ and } h''\left( \frac{2}{3} \right) = -2 . \] Thus, the maximum value of $h$ will be at $\frac{2}{3}$ and the value is $\frac{4}{27}$. \[ \textcolor{teal}{\boxed{ d_\infty \left( x^2, x^3 \right) = \frac{4}{27} }} \]