30-05-2024

Problem: Let $X$ be a topological space and $A \subset X$. Given a subset $S$ of $X$, let $\mathrm{int}(S)$, $\partial S$, and $\overline {S} $ denote the interior, boundary, and closure, respectively, of the set $S$. Which of the following is NOT necessarily true?
  • $\mathrm{int}(X\setminus A) \subseteq X\setminus \overline {A} $
  • $A \subseteq \overline {A} $
  • $\partial A\subseteq \partial (\mathrm{int}(A) )$
  • $\partial\left( \overline {A} \right) \subseteq \partial A$
Solution: We will analyze each option to see which of them is not true.

Option A

We will show that \[ \mathrm{int}(X\setminus A) = X\setminus \overline {A}. \] In particular, the inclusion also holds. We recall that $\mathrm{int}(A) $ is the largest open set contained in $A$ and $\overline {A} $ is the smallest closed set containing $A$. Observe that \begin{align*} A \subseteq \overline {A} & \implies X \setminus \overline {A} \subseteq X\setminus A. \end{align*} As $\overline {A} $ is a closed set $X \setminus \overline {A} $ must be open and hence by definition of the interior of a set we have \[ X \setminus \overline {A} \subseteq \mathrm{int}(X\setminus \overline {A} ). \] This proves one inclusion.
For the other inclusion, we observe that \begin{align*} A = X \setminus (X\setminus A) \subseteq X \setminus \mathrm{int}(X\setminus A). \end{align*} Since $\mathrm{int}(X\setminus A) $ is open, so $X\setminus \mathrm{int}(X\setminus A) $ must be closed and therefore, it must contain the closure of $A$. That is, \begin{align*} \overline {A} \subseteq X\setminus \mathrm{int}(X\setminus A) & \implies X \setminus \left( X\setminus \mathrm{int}(X\setminus A) \right) \subseteq X\setminus \overline {A} \\ & \implies \mathrm{int}(X\setminus A) \subseteq X\setminus \overline {A} . \end{align*} Therefore, we proved that \[ \textcolor{teal}{\boxed{ \mathrm{int}(X\setminus A) = X\setminus \overline {A} }} \]

Option B

This is true just by the definition of the closure of a set. Closure of any set is the smallest set containing that set. If $A$ is closed, then $A = \overline {A} $.

Option C

This need not be true. We can choose a set $A$ whose interior is empty but boundary is nonempty. For example, \[ X = \mathbb{R} \text{ and } A = \mathbb{Q}. \] Here we are considering the standard Euclidean topology. Then we have \[ \mathrm{int}(A) = \emptyset \text{ and } \partial \mathbb{Q} = \overline {\mathbb{Q}} \setminus \mathrm{int}(\mathbb{Q}) = \mathbb{R} . \] But, the other inclusion is always true. To see this, note that \begin{align*} \mathrm{int}(A) \subseteq A \subseteq \overline {A} & \implies \overline{\mathrm{int}(A) } \subseteq \overline{\overline {A} } = \overline {A} \\ & \implies \overline{\mathrm{int}(A) } \setminus \mathrm{int}(A) \subseteq \overline {A} \setminus \mathrm{int}(A) \\ & \implies \partial (\mathrm{int}(A)) \subseteq \partial A. \end{align*}

Option D

We have $\partial (\overline {A} ) = \overline{\overline {A} } \setminus \mathrm{int}(\overline {A} ) = \overline {A} - \mathrm{int}(\overline {A} )$. Since \begin{align*} \mathrm{int}(A) \subseteq A & \implies \overline {A} \setminus A \subseteq \overline {A} \setminus \mathrm{int}(A) \implies \partial (\overline {A} ) \subseteq \partial A. \end{align*}