29-05-2024

Problem: Let $a,b \in \mathbb{Z} $ such that $\gcd (a,b) = 1$. Let \[ \mathbb{Z} [i] = \left\{ x + \iota y : x,y \in \mathbb{Z} \right\}. \] Show that \[ \frac{\mathbb{Z}[i]}{\left\langle a + \iota b \right\rangle} \cong \frac{\mathbb{Z}}{\left\langle a^2 + b^2 \right\rangle} = \frac{\mathbb{Z}}{(a^2 + b^2)\mathbb{Z} }. \]
Solution: Define a map \[ f: \mathbb{Z} \rightarrow \frac{\mathbb{Z} [\iota ]}{\left\langle a + \iota b \right\rangle },\quad m \mapsto [m] = m + \left\langle a + \iota b \right\rangle. \] It is clear that the map is a homomorphism. We will show that the above map is surjective with kernel being $\left\langle a^2 + b^2 \right\rangle $.
  • The map $f$ is surjective. Since $\gcd (a,b) = 1$, there exists $p,q\in \mathbb{Z} $ such that $ap + bq = 1$. Consider \begin{align*} (a + \iota b)(q + \iota p) & = (aq - bp) + \iota (ap + bq) = aq - bp + \iota. \end{align*} This implies, \begin{align*} [a + \iota b] = [aq - bp + \iota] \implies [\iota] = [bp - aq] \in \frac{\mathbb{Z} [\iota ]}{\left\langle a+\iota b \right\rangle }. \end{align*} Let us denote $bp - aq$ by $A$. Since, $A \in \mathbb{Z} $, for any $x + \iota y \in \mathbb{Z} [\iota ]$, we have \begin{align*} f(x + Ay) = x + Ay + \left\langle a + \iota b \right\rangle = x + \iota y + \left\langle a + \iota b \right\rangle . \end{align*} This shows that $f$ is surjective.

  • We now claim that $\ker f $ is generated by $a^2 + b^2$. \begin{align*} m \in \ker f & \iff f(m) = 0 \iff m \in a + \iota b \iff (a + \iota b) \mid m \\ & \iff \frac{m}{a + \iota b} \in \mathbb{Z} \iff \frac{m}{a + \iota b}\times \frac{a - \iota b}{a - \iota b} \in \mathbb{Z} \\ & \iff \frac{m(a - \iota b)}{a^2 + b^2} \in \mathbb{Z} \iff (a^2 + b^2) \mid ma, mb \\ & \iff (a^2 + b^2) \mid \gcd (ma, mb) \\ & \iff (a^2 + b^2) \mid m. \end{align*} Thus, $\ker f = \left\langle a^2 + b^2 \right\rangle $.

Hence, from the first isomorphism theorem, we conclude that \[ \textcolor{teal}{\boxed{ \frac{\mathbb{Z}[i]}{\left\langle a + \iota b \right\rangle} \cong \frac{\mathbb{Z}}{\left\langle a^2 + b^2 \right\rangle} = \frac{\mathbb{Z}}{(a^2 + b^2)\mathbb{Z} } }} \]