Problem: Let $A = \begin{pmatrix}
0 & 2 \\
2 & 0 \\
\end{pmatrix}$ and $T: M_2(\mathbb{C} ) \to M_2(\mathbb{C} )$ be a linear map given by $T(B) = AB$. The characteristic polynomial of $T$ is
- $X^4 - 8X^2 + 16$
- $X^2 - 4$
- $X^2 - 2$
- $X^4 - 16$
Solution: We will find the matrix of $T$ respect to the standard basis of $M_2(\mathbb{C} )$. Recall that the standard basis of $M_2(\mathbb{C} )$ is given by
\[
\mathcal{B} = \left\{ e_{11}, e_{12} , e_{21} , e_{22} \right\},
\]
where $e_{ij} \in M_2(\mathbb{C} )$ whose $ij^{\text{th} }$ entry is $1$ and other entries are $0$. We have
\begin{align*}
T(e_{11} ) & = Ae_{11} = \begin{pmatrix}
0 & 2 \\
2 & 0 \\
\end{pmatrix} \begin{pmatrix}
1 & 0 \\
0 & 0 \\
\end{pmatrix} = \begin{pmatrix}
0 & 0 \\
2 & 0 \\
\end{pmatrix} = 2e_{21}
\\[1ex]
T(e_{12} ) & = Ae_{12} = \begin{pmatrix}
0 & 2 \\
2 & 0 \\
\end{pmatrix} \begin{pmatrix}
0 & 1 \\
0 & 0 \\
\end{pmatrix} = \begin{pmatrix}
0 & 0 \\
0 & 2 \\
\end{pmatrix} = 2e_{22}
\\[1ex]
T(e_{21} ) & = Ae_{12} = \begin{pmatrix}
0 & 2 \\
2 & 0 \\
\end{pmatrix} \begin{pmatrix}
0 & 0 \\
1 & 0 \\
\end{pmatrix} = \begin{pmatrix}
2 & 0 \\
0 & 0 \\
\end{pmatrix} = 2e_{11}
\\[1ex]
T(e_{22} ) & = Ae_{12} = \begin{pmatrix}
0 & 2 \\
2 & 0 \\
\end{pmatrix} \begin{pmatrix}
0 & 0 \\
0 & 1 \\
\end{pmatrix} = \begin{pmatrix}
0 & 2 \\
0 & 0 \\
\end{pmatrix} = 2e_{12}
\\[1ex]
\end{align*}
So, the matrix of $T$ with respect to the standard basis is
\[
T = [T]_\mathcal{B}
= \begin{pmatrix}
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2 \\
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
\end{pmatrix}.
\]
Now the characteristic polynomial of $T$ can be find by $\det (T - \lambda I) = 0$.
\begin{align*}
\det (T - \lambda I) = 0 & \implies
\begin{vmatrix}
-\lambda & 0 & 2 & 0 \\
0 & -\lambda & 0 & 2 \\
2 & 0 & -\lambda & 0 \\
0 & 2 & 0 & -\lambda \\
\end{vmatrix} = 0 \\[1ex]
& \implies -\lambda (-\lambda (\lambda ^2) + 2(2\lambda )) + 2(-2(\lambda ^2 - 4)) = 0 \\
& \implies \lambda ^4 - 8\lambda ^2 + 16 = 0.
\end{align*}
Hence, the characteristic polynomial of $T$ is
\[
X^4 - 8X^2 + 16 = 0.
\]
(An idea from
math.stackexchange leads to an easier method).
This can also be solved by observing that $A$ is diagonalizable with eigenvalues $2$ and $-2$. Let
\[
A u_j = \lambda _j u_j \quad \text{ and } \quad v_j^{\ast} A = \lambda _j v_j^{\ast}
\]
for some basis $u_j$ and for some dual basis $v_j^{\ast} $. Then note that $\{ u_j v_k^{\ast} \} $ forms a basis for $M_2(\mathbb{C} )$. Also,
\[
T\left( u_j v_k^T \right) = A \left( u_j v_k^T \right) = \lambda _j \left( u_j v_k^T \right).
\]
Thus, $u_j v_k^T$ is an eigenvector with eigenvalue $\lambda _j$. Hence the characteristic polynomial of $T$ is given by
\begin{align*}
(x - 2)(x-2)(x+2)(x+2) & = (x-2)^2 (x+2)^2 \\
& = (x^2 - 4)^2 \\
& = x^4 - 8x^2 + 16 = 0.
\end{align*}