Problem: The maximum value of $f(x,y) = 49 - x^2 - y^2$ on the line $x + 3y = 10$ is ______________.
Solution: We need to find the maximum of the function $49 - x^2 - y^2$ such that $ x + 3y = 10$. We will solve this problem by the Lagrange's multipliers. Let us denote
\[
g(x,y) = x + 3y - 10.
\]
Then the Lagrange multiplier will be
\begin{align}\label{eq:18May2024-1}
L(x,y, \lambda) & = f(x,y) + \lambda g(x,y) \notag \\
& = 49 - x^2 - y^2 +\lambda (x + 3y - 10).
\end{align}
Then the extrema can be found by solving
\begin{align*}
\frac{\partial L}{\partial x} = 0 = \frac{\partial L}{\partial y} = \frac{\partial L}{\partial \lambda }.
\end{align*}
That is,
\begin{align*}
\frac{\partial L}{\partial x } = 0 & \implies -2x + \lambda = 0 \implies x = \frac{\lambda}{2} \\[2ex]
\frac{\partial L}{\partial y } = 0 & \implies -2y + 3\lambda = 0 \implies y = \frac{3\lambda }{2} \\[2ex]
\frac{\partial L}{\partial \lambda } = 0 & \implies x + 3y = 10.
\end{align*}
Thus, we have
\begin{align*}
\frac{\lambda}{2} + \frac{9\lambda}{2} = 10 \implies \lambda = 2.
\end{align*}
Therefore,
\[
x = 1, \quad \text{and} \quad y = 3.
\]
Therefore, the point of extrema is $(1,3)$ and corresponding maximum value will be
\[
f(1,3) = 39.
\]