14-05-2024

Problem: The value of the integral \[ \int _0^{2\pi } \exp \left( e^{\iota \theta } - \iota \theta \right) \mathrm{d} \theta \] is equals to
  1. $2\pi \iota $
  2. $2\pi$
  3. $\pi$
  4. $\iota \pi$
Solution: We substitute \[ e^{\iota \theta } = z \implies \iota e^{\iota \theta }\mathrm{d} \theta = \mathrm{d} z \implies \mathrm{d}\theta = \frac{\mathrm{d} z}{\iota e^{\iota \theta }} = \frac{\mathrm{d} z}{\iota z} \] Thus, \begin{align*} \int _0^{2\pi } \exp \left( e^{\iota \theta } - \iota \theta \right) \mathrm{d} \theta & = \int _0^{2\pi } \frac{e^{e^{\iota \theta }}}{e^{\iota \theta }}\mathrm{d} \theta \\ & = \int _{\mathbb{S} ^1} \frac{e^z}{z} \left( \frac{\mathrm{d} z}{\iota z} \right) \\ & = \frac{1}{\iota }\int _\mathbb{S} ^1 \frac{e^z}{z^2}\mathrm{d} z = \frac{1}{\iota } \left( 2\pi \iota e^0 \right) = 2\pi . \end{align*} Here in the last step we used the Cauchy integral formula for derivatives.

First recall the Cauchy integral formula
Let $\gamma $ be a simple closed curve and the function $f$ is an analytic on a region containing $\gamma$ and its interior. Let us assume $\gamma $ is oriented counterclockwise. The for every $z_0$ inside $\gamma $ we have \[ f(z_0) = \frac{1}{2\pi \iota}\int _\gamma \frac{f(z)}{z-z_0}. \]
A generalization to this which is called Cauchy integral formula for derivatives is given by
If $f(z)$ and $\gamma $ satisfies the same hypothesis as for Cauchy's integral formula, then for all $z_0$ inside $\gamma $ we have \[ f^{(n)}\left( z_0 \right) = \frac{n!}{2\pi \iota } \int _\gamma \frac{f(z)}{(z-z_0)^{n+1}}\mathrm{d} z. \]
Thus the correct answer will be Option B.