Problem: Let $(x_n)$ be a sequence of real numbers defined as
\[
x_1 = 1, \text{ and } x_{n} = \frac{1}{3}\left( x_{n-1} + 1 \right), \quad \text{for } n\geq 2.
\]
Show that $(x_n)$ is a convergent sequence and find its limit.
Solution: We will first claim that $(x_n)$ is an decreasing sequence. Note that
\begin{align*}
x_n - x_{n + 1} & = \frac{1}{3} \left( x_{n-1} + 1 \right) - \frac{1}{3} \left( x_{n} + 1 \right) \\
& = \frac{1}{3}\left( x_{n-1} - x_n \right) \\
& = \frac{1}{3} \left( \frac{1}{3} \left( x_{n-2} - x_{n-1} \right) \right) = \left( \frac{1}{3} \right) ^2 \left( x_{n-2} - x_{n-1} \right) \\
& = \cdots \cdots \\
& = \left( \frac{1}{3} \right) ^{n-1} \left( x_1 - x_2 \right) = \left(\frac{1}{3}\right)^{n-1} \left( 1 - \frac{2}{3} \right) \geq 0.
\end{align*}
Thus, $(x_n)$ is a decreasing sequence.
It is clear that the sequence $(x_n)$ is bounded below by $0$. Therefore, the sequence will converge (
monotone convergence theorem). Let the limit of the sequence be $l$. Then $x_n \to l$ which implies $x_{n-1} \to l $. Thus,
\begin{align*}
& \lim_{n \to \infty} x_n = \lim_{n \to \infty} \frac{1}{3}\left( x_{n-1} + 1 \right) \\
\implies & l = \frac{1}{3} (l + 1) \\
\implies & l = \frac{1}{2}.
\end{align*}
Thus, the sequence is convergent and the lim is $\frac{1}{2}$.