Problem: Let $\left\{ e_k: k \in\mathbb{N} \right\} $ be an orthonormal basis for a Hilbert space $H$. Define
\begin{align*}
f_k = e_k + e_{k+1} ,\ k \in \mathbb{N} \quad \text{ and } \quad g_j = \sum_{n=1}^{j} (-1)^{n+1} e_n, \ j \in \mathbb{N} .
\end{align*}
Then
\[
\sum_{k=1}^{\infty} \left\vert \left\langle g_j, f_k \right\rangle \right\vert ^2
\]
is equal to
- $0$
- $j^2$
- $4j^2$
- $1$
Solution: et $k \in \mathbb{N} $. We will find $\left\vert \left\langle g_j, f_k \right\rangle \right\vert^2 $ for $j \in \mathbb{N} $.
\begin{align}
\left\vert \left\langle g_j, f_k \right\rangle \right\vert^2 & = \left\vert \left\langle \sum_{n=1}^{j} (-1)^{n+1} e_i, e_k + e_{k+1} \right\rangle \right\vert ^2 \notag\\[1ex]
& = \left\vert \sum_{i=1}^{j} (-1)^{n+1} \left\langle e_i, e_k + e_{k+1} \right\rangle \right\vert ^2 \label{eq:06Jan2024-1}
\end{align}
Note that if $j < k$, then
\[
\left\vert \left\langle g_j, f_k \right\rangle \right\vert = 0 \implies \left\vert \left\langle g_j, f_k \right\rangle \right\vert^2 = 0.
\]
If $j = k$, then using \eqref{eq:06Jan2024-1} and the previous observation,
\begin{align*}
\left\vert \left\langle g_j, f_k \right\rangle \right\vert^2 & = \left\vert (-1)^k \left\langle e_k, e_k + e_{k+1} \right\rangle \right\vert ^2 \\
& = \left\vert (-1)^k\right\vert = 1.
\end{align*}
Similarly, if $j \geq k + 1$, then
\begin{align*}
\left\vert \left\langle g_j, f_{k+1} \right\rangle \right\vert^2 & = \left\vert (-1)^k \left\langle e_k, e_k + e_{k+1} \right\rangle + (-1)^{k+1} \left\langle e_{k+1}, e_k + e_{k+1} \right\rangle \right\vert ^2 \\
& = \left\vert (-1)^k + (-1)^{k+1} \right\vert = 0.
\end{align*}
Thus, we obtained
\begin{equation}\label{eq:06Jan2024-2}
\left\vert \left\langle g_j, f_k \right\rangle \right\vert ^2 = \begin{cases}
0, &\text{ if } j \neq k ;\\
1, &\text{ if } j = k.
\end{cases}
\end{equation}
Now using \eqref{eq:06Jan2024-2} we have
\begin{align*}
\sum_{k=1}^{\infty} \left\vert \left\langle g_j, f_k \right\rangle \right\vert ^2 = \left\vert \left\langle g_j, f_j \right\rangle \right\vert ^2 = 1.
\end{align*}
Thus, the correct answer will be option (D).