02-01-2024

Problem: Consider the real function of two variables given by \[ u(x,y) = e^{2x} \left[ \sin 3x \cos 2y \cosh 3y- \cos 3x \sin 2y \sinh 3y \right]. \] Let $v(x,y)$ be the harmonic conjugate of $fu(x,y)$ such that $v(0,0) = 2$. Let $z = x + \iota y$ and $f(z) = u(x,y) + \iota v(x,y)$, then the value of $4 + 2\iota f(\iota \pi )$ is
  • $e^{3\pi } + e^{-3\pi }$
  • $e^{3\pi } - e^{-3\pi }$
  • $-e^{3\pi } + e^{-3\pi }$
  • $-e^{3\pi } - e^{-3\pi }$
Solution: We will use Milne-Thomson method for finding a holomorphic function to find the corresponding holomorphic function. We can do it by using the Cauchy-Riemann equations, but it will be too tedious. Let us give a brief overview of this method.
  • Problem 1: Both \( u(x, y) \) and \( v(x, y) \) are given. Determine \( f(z) \).
    Solution: \( f(z) = u(z, 0) + i v(z, 0) \).
  • Problem 2: Only \( u(x, y) \) is known, \( v(x, y) \) is not provided, and \( f(x + i0) \) is real. Determine \( f(z) \).
    Solution: \( f(z) = u(z, 0) \).
  • Problem 3: \( u(x, y) \) is available, but \( v(x, y) \) is unknown. Find \( f(z) \).
    Solution: \( f(z) = u(z, 0) - i \int u_y(z, 0) \, \mathrm{d} z \), where \( u_y(x, y) \) denotes the partial derivative of \( u(x, y) \) with respect to \( y \).
  • Problem 4: \( u(x, y) \) is not given, but \( v(x, y) \) is known. Find \( f(z) \).
    Solution: \( f(z) = \int v_x(z, 0) \, \mathrm{d} z + i v(z, 0) \), where \( v_x(x, y) \) represents the partial derivative of \( v(x, y) \) with respect to \( x \).

Here we are in the third category. So, corresponding holomorphic function will be \[ f(z) = u(z,0) - \iota \int u_y(z,0)\mathrm{d} z. \] Note that \begin{align*} u_y(x,y) & = e^{2x}\left[ -2\sin 3x \sin 2y \cosh 3y + 3\sin 3x \cos 2y \sinh 3y\right. \\ & \kern 1cm \left.-2\cos 3x\sin 2y \sinh 3y - 3 \cos 3x\sin 2y\cosh 3y\right]. \end{align*} Thus, \begin{align*} f(z) & = e^{2z} \sin 3z - C, \end{align*} where $C$ is constant of integration that will be determined by the condition given. Since, $v(0,0) = 2$, we have \begin{align*} f(0) = u(0,0) + \iota v(0,0) & \implies -C = 0 + 2 \iota \\ & \implies C = -2\iota . \end{align*} Thus, \[ f(z) = e^{2z}\sin 3z + 2\iota . \]

Now, we need to determine the value of $4 + 2\iota f(\iota \pi )$. We have \begin{align*} f(\iota \pi ) & = e^{2\iota \pi } \sin (3\iota \pi ) + 2\iota \\ & = \frac{e^{(3\iota\pi )\iota} - e^{(-3\iota \pi )\iota}}{2\iota } + 2\iota \\ & = \frac{e^{-3\pi} - e^{3\pi }}{2\iota } + 2\iota . \end{align*} Thus, \begin{align*} 4 + 2\iota f(\iota \pi ) & = 4 + 2\iota \left( \frac{e^{-3\pi} - e^{3\pi }}{2\iota } + 2\iota \right) = e^{-3\pi} - e^{3\pi }. \end{align*} Thus, the correct answer is option (C).