Problem: Find the least upper bound of the set
\[
S = \left\{ \frac{x}{1 + x^2} : x \in \mathbb{R} \right\} .
\]
Solution: Let $x \in \mathbb{R} $. Then,
\begin{align*}
(1 - x)^2 \geq 0 & \implies 1 + x^2 - 2x \geq 0\\
& \implies 1 + x^2 \geq 2x \\
& \implies 1 \geq \frac{2x}{1 + x^2} \\
& \implies \frac{x}{1 + x^2} \leq \frac{1}{2}.
\end{align*}
Thus, $\frac{1}{2}$ is an upper bound of the set $S$.
Note that for $x = 1$,
\[
\frac{x}{1 + x^2} = \frac{1}{1 + 1} = \frac{1}{2} \in S.
\]
Thus, the upper bound $\frac{1}{2} \in S$ and hence it is the least upper bound of $S$. Therefore,
\[
\textcolor{blue}{
\boxed{\mathrm{lub}(S) = \frac{1}{2} }
}
\]