Problem: Let $\lambda =3$ is an eigenvalue of the matrix
\[
\begin{bmatrix}
11 & -4 & -8 \\
4 & 1 & -4 \\
8 & -4 & -5 \\
\end{bmatrix}
\].
Find the eigenspace of $A$ corresponding to the eigenvalue $\lambda =3$.
Solution: We recall that the eigenspace of the eigenvalue $\lambda $ is the null space of the matrix $A - \lambda I$. Here,
\[
A - 3I =
\begin{bmatrix}
11 & -4 & -8 \\
4 & 1 & -4 \\
8 & -4 & -5 \\
\end{bmatrix} -
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix} =
\begin{bmatrix}
8 & -4 & -8 \\
4 & -2 & -4 \\
8 & -4 & -8 \\
\end{bmatrix}.
\]
Now we need to find the null space of the matrix $A - 3I$. We will use the row reduction to find the null space of $A - 3I$.
\begin{align*}
A- 3I =
\begin{bmatrix}
8 & -4 & -8 \\
4 & -2 & -4 \\
8 & -4 & -8 \\
\end{bmatrix} \xrightarrow[R_3 \to R_3 - R_1 ]{R_2 \to R_2 - \frac{1}{2}R_1}
\begin{bmatrix}
8 & -4 & -8 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{bmatrix} =
4\begin{bmatrix}
2 & -1 & -2 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{bmatrix}.
\end{align*}
Therefore, any vector $\mathbf{x} = \begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
\end{bmatrix}$ which is in the null space must satisfy
\[
2x_1 - x_2 - 2x_3 = 0 \implies x_2 = 2x_1 - 2x_3.
\]
Thus,
\[
\mathbf{x} = x_1
\begin{bmatrix}
1 \\
2 \\
0 \\
\end{bmatrix} + x_3
\begin{bmatrix}
0 \\
-2 \\
1 \\
\end{bmatrix}.
\]
Therefore, the eigenspace of $A$ corresponding to the eigenvalue $\lambda =3$ will be
\[
\operatorname{span}\left\{ %
\begin{bmatrix}
1 \\
2 \\
0 \\
\end{bmatrix},
\begin{bmatrix}
0 \\
-2 \\
1 \\
\end{bmatrix}
\right\} .
\]