Problem: Use the Laplace transformation to solve the following differential equation.
\begin{equation}\label{eq:24Nov2023-1}
y^\prime (t) = 3 - 2t, \ y(0) = 0.
\end{equation}
Solution: Let $F(s) = \mathcal{L} (f)$ denotes the Laplace transformation of the function $f(t)$. We recall that
\[
\mathcal{L} (f^\prime (t)) = s F(s) - f(0).
\]
Using the above,
\begin{align*}
\mathcal{L} \left( y^\prime (t) \right) = \mathcal{L} (3 - 2t) & \implies s Y(s) - y(0) = \mathcal{L} (3) - 2 \mathcal{L} (t) \\
& \implies s Y(s) = \frac{3}{s} - \frac{2}{s^2} \\
& \implies Y(s) = \frac{3}{s^2} - \frac{2}{s^3} \\
& \implies y(t) = \mathcal{L} ^{-1} \left( \frac{3}{s^2} - \frac{2}{s^3} \right) \\
& \implies y(t) = \mathcal{L} ^{-1} \left( \frac{3}{s^2} \right) - \mathcal{L} ^{-1} \left( \frac{2}{s^3} \right) \\
& \implies y(t) = 3t - t^2.
\end{align*}
Thus, the solution the differential equation \eqref{eq:24Nov2023-1}
\[
y(t) = 3t - t^2.
\]