Problem: Let $GL_2(\mathbb{C} )$ denote the group of $2\times 2$ invertible complex matrices with usual matrix multiplication. For $S,T \in GL_2(\mathbb{C} ),\ \langle S, T \rangle $ denotes the subgroup generated by $S$ and $T$. Let $S =
\begin{bmatrix}
0 & -1 \\
1 & 0 \\
\end{bmatrix} \in GL_2(\mathbb{C} )$ and $G_1, G_2, G_3$ be three subgroups of $GL_2(\mathbb{C} )$ given by
\begin{align*}
G_1 & = \langle S, T_1 \rangle , \text{ where } T_1 = \begin{bmatrix}
\iota & 0 \\
0 & \iota \\
\end{bmatrix}, \\
G_2 & = \langle S, T_2 \rangle , \text{ where } T_2 = \begin{bmatrix}
\iota & 0 \\
0 & -\iota \\
\end{bmatrix}, \\
G_3 & = \langle S, T_3 \rangle , \text{ where } T_3 = \begin{bmatrix}
0 & 1 \\
1 & 0 \\
\end{bmatrix}.
\end{align*}
Let $Z\left( G_i \right) $ denote the center of $G_i$ for $i = 1,2,3$. Which of the following statements is correct?
-
$G_1$ is isomorphic to $G_3$
-
$Z\left( G_1 \right) $ is isomorphic to $Z \left( G_2 \right) $
-
a$Z\left( G_3 \right) =
\left\{
\begin{bmatrix}
1 & 0 \\
0 & 0 \\
\end{bmatrix}
\right\} $
-
$Z\left( G_2 \right) $ is isomorphic to $Z\left( G_3 \right) $
Solution: We recall that the center of a group $G$ is defined as
\[
Z(G) \coloneqq \left\{ g\in G : g g^\prime = g^\prime g \ \text{for all } g^\prime \in G \right\}.
\]
We have the following important properties for the center of a group.
-
A group $ G $ is abelian if and only if $Z(G) = G$.
-
If the group is generated by $g_1,g_2,\dots, g_k$, then
\[
Z(G) = \left\{ g \in G : g g_j = g_j g\ \text{for } j = 1,2,\dots, k \right\} .
\]
Since each $g\in G$ can be written as the product of $g_i$'s, we have, if $g_i g_j= g_j g_i$ for all $i,j \in \{ 1,2,\dots, k \} $, then $Z(G) = G$, that is, $G$ is abelian.
Let us find the center of each of these groups. Note that
\[
Z \left( G_j \right) = \left\{ A \in GL_2(\mathbb{C} ) : A S = S A \text{ and } A T_j = T_j A ,\ j = 1,2,3 \right\} .
\]
Let $A = \begin{bmatrix}
a & b \\
c & d \\
\end{bmatrix}$. Consider the first condition, that is, $AS = SA$.
\begin{align*}
AS = SA & \implies
\begin{bmatrix}
a & b \\
c & d \\
\end{bmatrix}
\begin{bmatrix}
0 & -1 \\
1 & 0 \\
\end{bmatrix} =
\begin{bmatrix}
0 & -1 \\
1 & 0 \\
\end{bmatrix}
\begin{bmatrix}
a & b \\
c & d \\
\end{bmatrix} \\[1ex]
& \implies
\begin{bmatrix}
b & -a \\
d & -c \\
\end{bmatrix} =
\begin{bmatrix}
-c & -d \\
a & b \\
\end{bmatrix} \\[1ex]
& \implies b = -c, a = d.
\end{align*}
Thus, the matrix $A$ reduces to
\[
A = \begin{bmatrix}
a & b \\
-b & a \\
\end{bmatrix}.
\]
Now for each $T_j$, we need the commutative property to be satisfied. Note that,
\[
T_1 =
\begin{bmatrix}
\iota & 0 \\
0 & \iota \\
\end{bmatrix} = \iota I_2 \implies A T_1 = \iota A = T_1 A,\ \forall\ A.
\]
In particular, $S T_1 = T_1 S$ and hence, $Z\left( G_1 \right) = G_1$, that is, $G_1$ is abelian.
Now we consider $T_2$.
\begin{align*}
\textcolor{red}{j = 2} & \implies A T_2 = T_2 A \\
& \implies
\begin{bmatrix}
a & b \\
-b & a \\
\end{bmatrix}
\begin{bmatrix}
\iota & 0 \\
0 & -\iota \\
\end{bmatrix} =
\begin{bmatrix}
\iota & 0 \\
0 & -\iota \\
\end{bmatrix}
\begin{bmatrix}
a & b \\
-b & a \\
\end{bmatrix} \\[1ex]
& \implies
\begin{bmatrix}
a \iota & -b \iota \\
-b \iota & -a \iota \\
\end{bmatrix} =
\begin{bmatrix}
a \iota & b \iota \\
b \iota & -a \iota \\
\end{bmatrix} \\[1ex]
& \implies b = -b \text{ that is},\ b = 0 \\
& \implies A =
\begin{bmatrix}
a & 0 \\
0 & a \\
\end{bmatrix} = a I_2.
\end{align*}
Since $\det S = \det T_2 = 1$ and $A = a I_2 \in \left\langle S, T_2 \right\rangle $ implies $\det \left( a I_2 \right) = 1$, that is $a = \pm 1$. So, the only possibility for $A$ to be either $\pm I_2$. Since, $S^2 = -I_2$, so
\[
Z\left\{ G_2 \right\} = \left\{
\pm I_2
\right\} .
\]
Finally,
\begin{align*}
\textcolor{red}{j = 3} & \implies A T_3 = T_3 A \\
& \implies
\begin{bmatrix}
a & b \\
-b & a \\
\end{bmatrix}
\begin{bmatrix}
0 & 1 \\
1 & 0 \\
\end{bmatrix} =
\begin{bmatrix}
0 & 1 \\
1 & 0 \\
\end{bmatrix}
\begin{bmatrix}
a & b \\
-b & a \\
\end{bmatrix} \\[1ex]
& \implies
\begin{bmatrix}
b & a \\
a & -b \\
\end{bmatrix} =
\begin{bmatrix}
-b & a \\
a & b \\
\end{bmatrix} \\[1ex]
& \implies b = -b \text{ that is, } b = 0 \\
& \implies A = a I_2.
\end{align*}
Here again, since $S, T_3 \in GL_2(\mathbb{R} ) \subseteq GL_2(\mathbb{C} )$ and $\det S = 1$ and $\det T_3 = -1$, therefore, $aI_2 \in G_3 = \left\langle S, T_3 \right\rangle \subseteq GL_2(\mathbb{R} ) $. This implies $\det a I_2 = 1$ and hence, $a = \pm 1$. Since $S^2 = -I_2$, so
\[
Z\left( G_3 \right) = \left\{ \pm I_2 \right\} .
\]
In summary, we got
-
$Z\left( G_1 \right) = G_1$, that is, $G_1$ is abelian.
-
$Z\left( G_2 \right) = \{ \pm I_2 \} \neq G_2$, so $G_2$ is not abelian.
-
$Z\left( G_3 \right) = \{ \pm I_2 \} \neq G_3$, so $G_2$ is not abelian.
Therefore, options (a), (b) and (c) are FALSE and option (d) is TRUE.