Problem: Let
\[
\frac{z}{1- z - z^2} = \sum_{n = 0}^{\infty} a_n z^n,\ \ a_n \in \mathbb{R}
\]
for all $z$ in some neighbourhood of $0$ in $\mathbb{C} $. Then find the value of $a_5 + a_6$.
Solution: Recall that if $\vert z \vert \lt 1$, then
\[
\sum_{n=0}^{\infty} z^n = \frac{1}{1-z}.
\]
We will use this for evaluating the given expression. Take a neighbourhood of $0$ such that $\vert z + z^2 \vert \lt 1$. Consider,
\begin{align*}
& \frac{1}{1 - (z + z^2)} = \sum_{n=0}^{\infty} \left( z + z^2 \right) ^n \\
\implies & \frac{z}{1 - z - z^2} = \sum_{n=0}^{\infty} z\left( z + z^2 \right) ^n.
\end{align*}
According to the given condition,
\begin{align*}
\sum_{n=0}^{\infty} z\left( z + z^2 \right) ^n = \sum_{n=0}^{\infty} a_n z^n.
\end{align*}
Therefore, $a_5$ and $a_6$ will be the coefficient of $z^5$ and $z^6$ in $\sum_{n = 0} ^{\infty} z \left( z + z^2 \right) ^n$, respectively. Equivalently,
\begin{align*}
a_5 & = \text{ coefficient of $z^4$ in} \sum_{n=0}^{\infty} \left( z + z^2 \right) ^n \\
& = \text{ coefficient of $z^4$ in} \left[ \left( z + z^2 \right) ^2 + \left( z + z^2 \right) ^3 + \left( z + z^2 \right) ^4 \right] \\
& = \text{ coefficient of $z^0(z^2)^2$ in} \left( z + z^2 \right) ^2 \\
& \kern 0.5cm + \text{ coefficient of $z^2(z^2)^1$ in} \left( z + z^2 \right) ^3 \\
& \kern 0.5cm + \text{ coefficient of $z^4(z^2)^0$ in} \left( z + z^2 \right) ^4 \\
& = \binom{2}{2} + \binom{3}{1} + \binom{4}{0} \\
& = 1 + 3 + 1 = 5.
\end{align*}
Similarly,
\begin{align*}
a_6 & = \text{ coefficient of $z^5$ in} \sum_{n=0}^{\infty} \left( z + z^2 \right) ^n \\
& = \text{ coefficient of $z^5$ in} \left[ \left( z + z^2 \right) ^3 + \left( z + z^2 \right) ^4 + \left( z + z^2 \right) ^5 \right] \\
& = \text{ coefficient of $z^1(z^2)^2$ in} \left( z + z^2 \right) ^3 \\
& \kern 0.5cm + \text{ coefficient of $z^3(z^2)^1$ in} \left( z + z^2 \right) ^4 \\
& \kern 0.5cm + \text{ coefficient of $z^5(z^2)^0$ in} \left( z + z^2 \right) ^5 \\
& = \binom{3}{2} + \binom{4}{3} + \binom{5}{0} \\
& = 3 + 4 + 1 = 8.
\end{align*}
Thus,
\[
a_5 + a_6 = 5 + 8 = 13.
\]