Problem: Find the rank and nullity of the matrix
\[
\begin{bmatrix}
1 & -2 & 2 & 3 & -6 \\
0 & -1 & -3 & 1 & 1 \\
-2 & 4 & -3 & -6 & 11 \\
\end{bmatrix}.
\]
Solution: We will use the row-reduce to find the rank of the given matrix.
\begin{align*}
\begin{bmatrix}
1 & -2 & 2 & 3 & -6 \\
0 & -1 & -3 & 1 & 1 \\
-2 & 4 & -3 & -6 & 11 \\
\end{bmatrix} \xrightarrow{R_3 \to R_3 + 2R_1}
\begin{bmatrix}
1 & -2 & 2 & 3 & -6 \\
0 & -1 & -3 & 1 & 1 \\
0 & 0 & 1 & 0 & -1 \\
\end{bmatrix}.
\end{align*}
Since there are three independent rows of the matrix, and hence the rank of the given matrix will be $3$. Now we will apply the rank-nullity theorem to determine the nullity of the matrix.
\[
\operatorname{nullity}(A) = 5 - \operatorname{rank}(A) = 5 - 3 = 2.
\]