Problem: Prove that the sequence
\[
x_n = \int \limits_{1}^n \frac{\cos t}{t^2} \mathrm{d}t
\]
is Cauchy.
Solution: Let $n > m$. Consider
\begin{align*}
\left\vert x_n - x_m \right\vert & = \left\vert \int\limits_{1}^n \frac{\cos t}{t^2} \mathrm{d}t - \int\limits_{1}^m \frac{\cos t}{t^2}\mathrm{d}t \right\vert \\
& = \left\vert \int\limits_{1}^m \frac{\cos t}{t^2}\mathrm{d}t + \int\limits_{m}^n \frac{\cos t}{t^2}\mathrm{d}t - \int\limits_{1}^m \frac{\cos t}{t^2}\mathrm{d}t \right\vert \\
& = \left\vert \int\limits_{m}^n \frac{\cos t}{t^2} \mathrm{d}t \right\vert \\
& \leq \int\limits_m^n \frac{1}{t^2}\mathrm{d}t = \frac{1}{m} - \frac{1}{n}.
\end{align*}
Since, the sequence $\left( \frac{1}{n} \right) $ is Cauchy, we can find $n_n \in \mathbb{N} $ such that for $n>m\geq n_0$
\[
\frac{1}{m} - \frac{1}{n} \lt \varepsilon .
\]
For the above $n_0$, and $n \gt m \geq n_0$, we have
\[
\left\vert x_n - x_m \right\vert = \frac{1}{m} - \frac{1}{n} \lt \varepsilon .
\]
Thus, the sequence is Cauchy.