Problem: Prove that $(\cosh x - \sinh x)^n = \cosh nx - \sinh nx $ for any $n\in \mathbb{Z} $.
Solution: Recall that
\[
\cosh x = \frac{e^x + e^{-x}}{2}, \text{ and } \sinh x = \frac{e^x - e^{-x}}{2}.
\]
So, we have
\begin{align*}
(\cosh x - \sinh x)^n & = \left( \frac{e^x + e^{-x}}{2} - \frac{e^x - e^{-x}}{2}\right)^n \\
& = \left( \frac{2e^{-x}}{2} \right) ^n \\
& = e^{-nx}.
\end{align*}
The RHS will be
\begin{align*}
(\cosh x - \sinh x) & = \frac{e^{nx} + e^{-nx}}{2} - \frac{e^{nx} - e^{-nx}}{2} \\
& = \frac{2 e^{-nx}}{2} \\
& = e^{-nx} \\
& = \left( \cosh x - \sinh x \right) ^n.
\end{align*}