Problem: Show that for any $\varepsilon >0$ there exists $K\in \mathbb{N} $ such that for any $k \geq K$,
\[
3 - \varepsilon \lt \frac{3k + 1}{k + 3} \lt 3 + \varepsilon .
\]
Solution: We need to find $K \in \mathbb{N} $ such that for any $k \geq K$
\begin{align*}
3 - \varepsilon \lt \frac{3k + 1}{k + 3} \lt 3 + \varepsilon.
\end{align*}
At first we will find $K$ such that for any $k \geq K$
\[
3 - \varepsilon \lt \frac{3k + 1}{k + 3}
\]
is true. So,
\begin{align*}
3 - \varepsilon \lt \frac{3k + 1}{k + 3} & \iff (3 - \varepsilon ) (k + 3) \lt 3k + 1 \\
& \iff 9 - k \varepsilon - 3\varepsilon \lt 1 \\
& \iff 8 \lt \varepsilon (k + 3) \\
& \iff k \gt \frac{8}{\varepsilon } - 3.
\end{align*}
From the Archimedean property, we choose $K \in \mathbb{N} $ such that $K > \frac{8}{\varepsilon } - 3$. So for any $k \geq K_1$, we have
\[
k > \frac{8}{\varepsilon } - 3 \implies 3 - \varepsilon \lt \frac{3k + 1}{k + 3}.
\]
On the other hand, note that for any $k \in \mathbb{N} $
\[
3 - \frac{3k + 1}{k + 3} = \frac{3k + 3 - 3k - 1}{k + 3} = \frac{2}{k + 3} > 0.
\]
Thus, for any $k \in \mathbb{N} $ we have
\[
\frac{3k + 1}{k + 3} \lt 3 + \varepsilon .
\]
Thus, for any $k \geq K$ we have
\[
3 - \varepsilon \lt \frac{3k + 1}{k + 3} \lt 3 + \varepsilon.
\]