Problem: Let $f: \mathbb{R} \to \mathbb{R} $ be a continuous function. Consider a sequence defined as
\[
x_1 \in \mathbb{R} \text{ and } x_{n+1} = f\left( x_n \right).
\]
Suppose that $x_n \to l$ and $f^\prime (l)$ exists. Show that $\vert f^\prime (l) \vert \leq 1$.
Solution: To the contrary, let us assume that $\vert f^\prime (l)\vert > 1$. Since $f$ is continuous, we have
\[
l = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} f\left( x_n \right) = f(l).
\]
Consider,
\begin{align*}
\left\vert f^\prime (l) \right\vert & = \left\vert \lim_{x \to l} \frac{f(x) - f(l)}{x - l} \right\vert = \lim_{x \to l} \left\vert \frac{f(x) - f(l)}{x - l} \right\vert > 1.
\end{align*}
Take $\varepsilon = \frac{\vert f(l) \vert - 1}{2}$. For $\vert x-l \vert \lt \delta $ we have,
\begin{align*}
\left\vert \left\vert \frac{f(x) - f(l)}{x - l} \right\vert - \left\vert f^\prime (l) \right\vert \right\vert \lt \varepsilon & \implies \left\vert f^\prime (l) \right\vert - \varepsilon \lt \left\vert \frac{f(x) - f(l)}{x - l} \right\vert \lt \left\vert f^\prime (l) \right\vert + \varepsilon \\
& \implies \left\vert \frac{f(x) - f(l)}{x - l} \right\vert > \frac{\left\vert f^\prime (l) \right\vert + 1}{2} > 1.
\end{align*}
Using the above inequality, if $\vert x-l \vert \lt \delta $ we have
\begin{align*}
\vert x - l \vert \lt \vert x - l \vert \frac{\left\vert f^\prime (l) \right\vert + 1}{2} \lt \vert f(x) - f(l) \vert .
\end{align*}
Since $x_n \to l$ so for the above $\delta $ we can find $n_0 \in \mathbb{N} $ such that for $n \geq n_0$
\[
\left\vert x_n - l \right\vert \lt \delta .
\]
Thus, for $n \geq n_0$
\[
\vert x_n - l \vert \lt \left\vert f\left( x_n \right) - f(l) \right\vert = \left\vert x_{n+1} - l \right\vert
\]
In particular,
\begin{align*}
\vert x_{n_0} - l \vert \lt \vert x_{n_0 + 1} - l\vert \lt \vert x_n - l \vert.
\end{align*}
Taking limit, we get
\begin{align*}
\vert x_{n_0} - l \vert \lt \vert x_{n_0 + 1} - l\vert \leq 0,
\end{align*}
which is a contradiction. Therefore, we must have $\left\vert f^\prime (l) \right\vert \leq 1$.