Problem: et $V$ be a vector space $U \subset V$. We define the annihilator of $U$ as
\[
\mathrm{ann}(U) = \left\{ \phi \in V^*: \phi (u) = 0,~ u \in U \right\},
\]
where $V^*$ denotes the dual of $V$ which is the set of all linear functionals on $V$.
Let $\left\{ e_1, e_2,\dots, e_5 \right\} $ be the standard basis for $\mathbb{R} ^n$ and let $\left\{ \phi _i: i = 1,2,\dots,5 \right\} $ be the dual basis for $\left( \mathbb{R} ^5 \right) ^*$. Suppose that
\[
U = \operatorname{span}\left\{ e_1, e_2 \right\} = \left\{ (x_1, x_2, 0,0,0) \in \mathbb{R} ^5: x_1, x_2 \in \mathbb{R} \right\} .
\]
Show that $\mathrm{ann} (U) = \operatorname{span}\left\{ \phi _3, \phi _4, \phi _5 \right\} $.
Solution: Recall that
\begin{align*}
\phi _j(e_i) = \delta _{ij} =
\begin{cases}
1, &\text{ if } i = j ;\\
0, &\text{ if } \text{ otherwise}.
\end{cases}
\end{align*}
If $\mathbf{x} = \left( x_1, x_2, \dots, x_5 \right) $, then $\phi _j(\mathbf{x} ) = x_j$. If $\phi \in \operatorname{span}\left\{ \phi _3,\phi _4,\phi _5 \right\} $, then we have
\[
\phi = c_3\phi _3 + c_4\phi _4 + c_4\phi _5, ~~~c_3,c_4,c_5 \in \mathbb{R} .
\]
Also, for any $\mathbf{x} = \left( x_1, x_2, 0,0,0 \right) \in U$ we have $\phi (\mathbf{x} ) = 0$. This implies, $\phi \in \mathrm{ann} (U)$ and hence $\operatorname{span}\left\{ \phi _3, \phi _4, \phi _5 \right\} \subseteq \mathrm{ann} (U) $. On the other hand, let $\phi \in \mathrm{ann} (U)$. Since $\phi \in \mathrm{ann} \subseteq \left( \mathbb{R} ^5 \right) ^*$, there exists constants $a_1,a_2,\dots,a_5$ such that
\[
\phi = \sum_{i=1}^{5} a_{i} \phi _i.
\]
We need to show that $\phi \in \operatorname{span}\left\{ \phi _3, \phi _4, \phi _5 \right\} $, that is, $a_1= a_2 = 0$. Observe that $e_1, e_2 \in U $, so
\begin{align*}
\phi (e_1) = 0 \implies \sum_{i=1}^{5} \phi _i \left( e_1 \right) = a_1 \\
\phi (e_2) = 0 \implies \sum_{i=1}^{5} \phi _i \left( e_2 \right) = a_2.
\end{align*}
Therefore, $a_1 = a_2 = 0$ and hence $\phi \in \operatorname{span}\left\{ \phi _3, \phi _4, \phi _5 \right\} $. Thus, $\mathrm{ann} (U) \subseteq \operatorname{span}\left\{ \phi _3, \phi _4, \phi_5 \right\} $.