Problem: Evaluate
\[
\oint \limits_{|z| = 3} \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)} \mathrm{d} z.
\]
Solution: Let us write
\[
I = \oint \limits_{|z| = 3} \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)} \mathrm{d} z
\]
Note that
\[
\frac{1}{(z-1)(z-2)} = \frac{1}{z-2} - \frac{1}{z-1}.
\]
Thus,
\begin{align*}
I & = \oint\limits_{|z|=3} \frac{\sin \pi z^2 + \cos \pi z^2}{z - 2}\mathrm{d} z - \oint \limits_{|z| = 3} \frac{\sin \pi z^2 + \cos \pi z^2}{z - 1}\mathrm{d} z \\
& = \oint\limits_{|z|=3} \frac{f(z)}{z - 2}\mathrm{d} z - \oint \limits_{|z| = 3} \frac{f(z)}{z - 1}\mathrm{d} z,~ f(z) = \sin \pi z^2 + \cos \pi z^2 \\
& = 2\pi \iota f(2) - 2\pi \iota f(1) \\
& = 2\pi \iota \left( 0 + 1 \right) - 2\pi \iota \left( 0 + (-1) \right) \\
& = 4\pi \iota.
\end{align*}
Here we have used the Cauchy integral theorem. Since $z=2$ and $z=1$ both lie inside the contour $\vert z \vert =3$ and $f(z)$ is analytic inside the same contour. Therefore, $I = 4\pi \iota $.