Problem: Let $A$ be the matrix given by
\[
A = \begin{bmatrix}
-2 & 0 & 1 \\
-5 & 3 & \alpha \\
4 & -2 & -1
\end{bmatrix}.
\]
Find values of $\alpha \in \mathbb{R}$ such that $A$ has eigenvalues $0,3$ and $-3$.
Solution: Let us write the characteristic polynomial of $A$.
\begin{align*}
p(t) & = \det (A - \lambda I) \\
& = \det
\begin{bmatrix}
-2 - t & 0 & 1 \\
-5 & 3 - t & \alpha \\
4 & -2 & -1 - t \\
\end{bmatrix} \\
& = -(2+t)
\begin{vmatrix}
3 - t & \alpha \\
-2 & -1 - t \\
\end{vmatrix} + 1
\begin{vmatrix}
-5 & 3 - t \\
4 & -2 \\
\end{vmatrix} \\
& = -(t + 2) \left( (t+1)(t - 3) + 2\alpha \right) + \left( 10 + 4 (t - 3) \right) \\
& = - (2 + t) \left( t^2 - 2t - 3 + 2\alpha \right) + 4t + 7 \\
& = -2t^2 + 4t + 6 - 4\alpha - t^3 + 2t^2 + 3t - 2t \alpha + 4t + 7 \\
& = -t^3 + (11 - 2\alpha )t + 4 - 4\alpha.
\end{align*}
Since $A$ has the eigenvalues $0, 3$ and $-3$, the characteristic polynomial will be
\[
p(t) = -t(t - 3)(t + 3) = -t^3 + 9t.
\]
Therefore,
\begin{align*}
& -t^3 + (11 - 2\alpha )t + 4 - 4\alpha. = -t^3 + 9t \\
\implies & t^3 + (11 - 2\alpha )t + 4 - 4\alpha = -t^3 + 9t \\
\implies & 11 - 2\alpha = 9, -4 + 4\alpha = 0 \\
\implies & \alpha = 1.
\end{align*}
Therefore, the required value of $\alpha $ will be $1$.