13-09-2023

Problem: Let $G$ be any group and $g \in G$ which is not identity. Let $\text{Ord}(g) = 20 $. Then find the order of $g^6$ and $g^{13}$.
Solution: Let us first prove a general result. For any $g \in G$ if $\text{ord}(g) = n $, then for any $k \in \mathbb{N} $, the order of $g^k$ will be $\frac{n}{\gcd (n, k)}$.

To prove the above, we need to show that
  • $\left( g^k \right) ^{\frac{n}{\gcd (n,k)}} = e$ and
  • if $\left( g^k \right) ^j = e$, then $\frac{n}{\gcd{n,k}} \mid j$.
Since $\text{ord}(g) = n$, the first point is clear. \[ \left( g^k \right) ^{\frac{n}{\gcd (n,k)}} = \left( g^n \right) ^{\frac{k}{\gcd (n,k)}} = e. \] For the second point, we note that \[ (g^k)^j = e \implies n \mid kj. \] So we have \begin{align*} n \mid kj \text{ and } n \mid nj & \implies n \mid \gcd (nj, kj) \\ & \implies n \mid \gcd (n,k)j \\ & \implies \frac{n}{\gcd (n,k)} \mid j. \end{align*}

Now using the result that we have just proved we have \begin{align*} \text{ord} \left( g^6 \right) & = \frac{20}{\gcd (20,6)} = \frac{20}{2} = 10 \\[2ex] \text{ord}\left( g^{13} \right) & = \frac{20}{\gcd (20, 13)} = \frac{20}{1} = 20. \end{align*}