Problem: Let $\alpha $ and $\beta $ be two positive numbers. Show that
\[
\lim_{n \to \infty} \sqrt[n]{\alpha ^n + \beta ^n} = \max\{\alpha ,
\beta \}.
\]
Solution: Without loss of generality, let us assume that $\alpha \geq \beta $. We will show that
\[
\lim_{n \to \infty} \sqrt[n]{\alpha ^n + \beta ^n} = \alpha .
\]
Note that
\begin{align*}
\lim_{n \to \infty} \sqrt[n]{\alpha^n + \beta ^n} & = \lim_{n \to \infty} \sqrt[n]{\alpha ^n \left( 1 + \frac{\beta ^n}{\alpha ^n} \right) } \\
& = \alpha \lim_{n \to \infty} \sqrt[n]{1 + \left( \frac{\beta }{\alpha } \right) ^n}.
\end{align*}
If $\alpha > \beta $, then $\frac{\beta}{\alpha }<1$ and hence $\left( \frac{\beta }{\alpha } \right) ^n \rightarrow 0$. This implies the result. If $\alpha =\beta $, then
\[
\sqrt[n]{\alpha ^n + \beta ^n} = \sqrt[n]{2\alpha ^n} = \alpha \cdot 2^{\frac{1}{n}} \rightarrow \alpha .
\]
Here, we have used that for any $a>0$, the sequence $\left( a^{\frac{1}{n}} \right) $ converges to $1$. Thus, we proved that
\[
\lim_{n \to \infty} \sqrt[n]{\alpha ^n + \beta ^n} = \max\{\alpha ,\beta \} .
\]
We can also solve this using the Sandwich's theorem. Again assuming that $\alpha \geq \beta $. Note that
\[
\alpha \leq \sqrt[n]{\alpha ^n + \beta ^n} \leq \sqrt[n]{\alpha ^n + \alpha^n}= \alpha \cdot 2^{\frac{1}{n}}.
\]
Thus, using the Sandwich's theorem the conclusion followed.