Problem: Let $f$ be a function from a set $A$ to a set $B$. Let $S$ and $T$ be two nonempty subsets of $A$. Then show that
-
$f(S \cup T) = f(S) \cup f(T)$
-
$f(S \cap T) \subseteq f(S) \cap f(T)$.
Also, show that in part (2), the inclusion may be proper.