06-08-2023

Problem: Let $M$ be an invertible matrix of dimension $2n \times 2n$, represented in block form as \[ M = \begin{bmatrix} A & B \\ C & D \\ \end{bmatrix}, \kern 0.5cm \text{ and } \kern 0.5cm \begin{bmatrix} E & F \\ G & H \\ \end{bmatrix}. \] Then prove that \[ \det M \cdot \det I = - \det C. \]
Solution: Let $I$ denotes the identity matrix. Observe that \[ \begin{bmatrix} A & B \\ C & D \\ \end{bmatrix} \begin{bmatrix} E & F \\ G & H \\ \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & I \\ \end{bmatrix} \implies \begin{bmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \\ \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & I \\ \end{bmatrix}. \] Note that \[ \det \begin{bmatrix} E & I \\ G & 0 \\ \end{bmatrix} = -\det G. \] Therefore, \begin{align*} \det M \cdot (-\det G) & = \det \begin{bmatrix} A & B \\ C & D \\ \end{bmatrix} \cdot \det \begin{bmatrix} E & I \\ G & 0 \end{bmatrix} \\ & = \det \begin{bmatrix} A & B \\ C & D \\ \end{bmatrix} \begin{bmatrix} E & I \\ G & 0 \end{bmatrix} \\ & = \det \begin{bmatrix} AE + BG & A \\ CE + DG & C \end{bmatrix} \\ & = \det \begin{bmatrix} I & A \\ 0 & C \\ \end{bmatrix} \\ & = \det C. \end{align*} Therefore, we proved that \[ \det M \cdot \det G = -\det C. \]