Problem: Let $x, x + e^x$ and $1 + x + e^x$ be solution sof a linear differential equation with constant coefficient. If $y(x)$ is a solution of the same equation satisfying $y(0) = 3, y^\prime (0) = 4$, then find the value of $y(1)$.
Solution: Let the differential equation be
\begin{equation}\label{eq:04Aug2023-1}
y^{\prime\prime} + a y^\prime + by = R(x),
\end{equation}
where $a,b$ are real constants and $R(x)$ is a function of $x$. Given that $x, x + e^x$ and $1 + x + e^x$ are solution of \eqref{eq:04Aug2023-1}, we get
\begin{align*}
& a + bx = R(x) \\
& e^x + a \left( e^x + 1 \right) + b \left( x + e^x \right) = R(x) \\
& e^x + a \left( e^x + 1 \right) + b \left(1 + x + e^x \right) = R(x) .
\end{align*}
Using the last two equations, we get
\[
b + R(x) = R(x) \implies b = 0 \implies a = R(x).
\]
Substituting the value of $a$, in
\begin{align*}
e^x + a \left( e^x + 1 \right) + b \left( x + e^x \right) = R(x) & \implies e^x + R(x)\left( e^x + 1 \right) = R(x) \\
& \implies R(x) = -1.
\end{align*}
Therefore, the differential equation \eqref{eq:04Aug2023-1} will be
\begin{equation}\label{eq:04Aug2023-2}
y^{\prime\prime} - y = -1.
\end{equation}
We need to find the solution of \eqref{eq:04Aug2023-2}. The characteristic equation for the above differential equation will be
\[
m^2 - m = 0 \implies m = 0, 1.
\]
Thus, solution of the corresponding homogeneous equation will be
\begin{equation}\label{eq:04Aug2023-3}
y_c(x) = c_1 + c_2 e^x,
\end{equation}
where $c_1$ and $c_2$ are arbitrary constants.
Now we need to find a general solution. If $D$ is the differential operator, then we have
\begin{align*}
\frac{1}{D^2 - D} (-1) & = \frac{1}{D} (1- D)^{-1} (1) \\
& = \frac{1}{D} \left( 1 + D + D^2 + \cdots \right) (1) \\
& = \frac{1}{D} (1) \\
& = x.
\end{align*}
Therefore, we got
\[
y(x) = c_1 = c_2 e^x +x .
\]
Now we will use the conditions to determine constants $c_1$ and $c_2$. We have
\begin{align*}
y(0) = 3 & \implies c_1 + c_2 = 3 \\
y^\prime (0) = 4 & \implies c_2 + 1 = 4 .
\end{align*}
Therefore, we have $c_1 = 0$ and $c_2 = 3$. Hence, the solution of \eqref{eq:04Aug2023-2} is
\[
y(x) = 3e^x + x,
\]
and $y(1) = 3e + 1$.